Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vadim V. Silberschmidt is active.

Publication


Featured researches published by Vadim V. Silberschmidt.


Medical Engineering & Physics | 2011

Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone

Khurshid Alam; A.V. Mitrofanov; Vadim V. Silberschmidt

Bone drilling is widely used in orthopaedics and surgery; it is a technically demanding surgical procedure. Recent technological improvements in this area are focused on efforts to reduce forces in bone drilling. This study focuses on forces and a torque required for conventional and ultrasonically-assisted tool penetration into fresh bovine cortical bone. Drilling tests were performed with two drilling techniques, and the influence of drilling speed, feed rate and parameters of ultrasonic vibration on the forces and torque was studied. Ultrasonically-assisted drilling (UAD) was found to reduce a drilling thrust force and torque compared to conventional drilling (CD). The mechanism behind lower levels of forces and torque was explored, using high-speed filming of a drill-bone interaction zone, and was linked to the chip shape and character of its formation. It is expected that UAD will produce holes with minimal effort and avoid unnecessary damage and accompanying pain during the incision.


Journal of The Mechanical Behavior of Biomedical Materials | 2013

Variability and anisotropy of mechanical behavior of cortical bone in tension and compression

Simin Li; Emrah Demirci; Vadim V. Silberschmidt

The mechanical properties of cortical bone vary not only from bone to bone; they demonstrate a spatial viability even within the same bone due to its changing microstructure. They also depend considerably on different loading modes and orientations. To understand the variability and anisotropic mechanical behavior of a cortical bone tissue, specimens cut from four anatomical quadrants of bovine femurs were investigated both in tension and compression tests. The obtained experimental results revealed a highly anisotropic mechanical behavior, depending also on the loading mode (tension and compression). A compressive longitudinal loading regime resulted in the best load-bearing capacity for cortical bone, while tensile transverse loading provided significantly poorer results. The distinctive stress-strain curves obtained for tension and compression demonstrated various damage mechanisms associated with different loading modes. The variability of mechanical properties for different cortices was evaluated with two-way ANOVA analyses. Statistical significances were found among different quadrants for the Youngs modulus. The results of microstructure analysis of the entire transverse cross section of a cortical bone also confirmed variations of volume fractions of constituents at microscopic level between anatomic quadrants: microstructure of the anterior quadrant was dominated by plexiform bone, whereas secondary osteons were prominent in the posterior quadrant. The effective Youngs modulus predicted using the modified Voigt-Reuss-Hill averaging scheme accurately reproduced our experimental results, corroborating additionally a strong effect of random and heterogeneous microstructure on variation of mechanical properties in cortical bone.


Journal of The Mechanical Behavior of Biomedical Materials | 2011

Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.

Adel A. Abdel-Wahab; Khurshid Alam; Vadim V. Silberschmidt

Bone fractures affect the health of many people and have a significant social and economic effect. Often, bones fracture due to impacts, sudden falls or trauma. In order to numerically model the fracture of a cortical bone tissue caused by an impact it is important to know parameters characterising its viscoelastoplastic behaviour. These parameters should be measured for various orientations in a bone tissue to assess bones anisotropy linked to its microstructure. So, the first part of this study was focused on quantification of elastic-plastic behaviour of cortical bone using specimens cut along different directions with regard to the bone axis-longitudinal (axial) and transverse. Due to pronounced non-linearity of the elastic-plastic behaviour of the tissue, cyclic loading-unloading uniaxial tension tests were performed to obtain the magnitudes of elastic moduli not only from the initial loading part of the cycle but also from its unloading part. Additional tests were performed with different deformation rates to study the bones strain-rate sensitivity. The second part of this study covered creep and relaxation properties of cortical bone for two directions and four different anatomical positions-anterior, posterior, medial and lateral-to study the variability of bones properties. Since viscoelastoplasticity of cortical bone affects its damping properties due to energy dissipation, the Dynamic Mechanical Analysis (DMA) technique was used in the last part of our study to obtain magnitudes of storage and loss moduli for various frequencies. Based on analysis of elastic-plastic behaviour of the bovine cortical bone tissue, it was found that magnitudes of the longitudinal Youngs modulus for four cortical positions were in the range of 15-24 GPa, while the transversal modulus was lower--between 10 and 15 GPa. Axial strength for various anatomical positions was also higher than transversal strength with significant differences in magnitudes for those positions. Quantitative data obtained in creep and relaxation tests exhibited no significant position-specific differences. DMA results demonstrated relatively low energy-loss capability due to viscosity of bovine cortical bone that has a loss factor in the range of 0.035-0.1.


Smart Materials and Structures | 2010

Vibration characteristics of MR cantilever sandwich beams: experimental study

Vianney Lara-Prieto; Robert M. Parkin; Michael R. Jackson; Vadim V. Silberschmidt; Zbigniew Kesy

The concept of vibration controllability with smart fluids within flexible structures has been of significant interest in the past two decades. Although much research has been done on structures with embedded electrorheological (ER) fluids, there has been little investigation of magnetorheological (MR) fluid adaptive structures. In particular, a body of research on the experimental work of cantilever MR beams is still lacking. This experimental study investigates the controllability of vibration characteristics of magnetorheological cantilever sandwich beams. These adaptive structures are produced by embedding an MR fluid core between two elastic layers. The structural behaviour of the MR beams can be varied by applying an external magnetic field to activate the MR fluid. The stiffness and damping structural characteristics are controlled, demonstrating vibration suppression capabilities of MR fluids as structural elements. MR beams were fabricated with two different materials for comparison purposes. Diverse excitation methods were considered as well as a range of magnetic field intensities and configurations. Moreover, the cantilever MR beams were tested in horizontal and vertical configurations. The effects of partial and full activation of the MR beams were outlined based on the results obtained. The controllability of the beams vibration response was observed in the form of variations in vibration amplitudes and shifts in magnitudes of the resonant natural frequency.


Journal of Applied Physics | 2010

A micromechanism study of thermosonic gold wire bonding on aluminum pad

Hui Xu; Changqing Liu; Vadim V. Silberschmidt; Stevin S. Pramana; Timothy John White; Zhong Chen; M. Sivakumar; Viola L. Acoff

This research was funded as a PMI2 Project Grant No. RC 41 through the UK Department for Innovation, Universities and Skills DIUS.


Ultrasonics | 2013

Enhanced ultrasonically assisted turning of a β-titanium alloy

Agostino Maurotto; Riaz Muhammad; Anish Roy; Vadim V. Silberschmidt

Although titanium alloys have outstanding mechanical properties such as high hot hardness, a good strength-to-weight ratio and high corrosion resistance; their low thermal conductivity, high chemical affinity to tool materials severely impair their machinability. Ultrasonically assisted machining (UAM) is an advanced machining technique, which has been shown to improve machinability of a β-titanium alloy, namely, Ti-15-3-3-3, when compared to conventional turning processes.


electronic components and technology conference | 2008

Effects of process parameters on bondability in thermosonic copper ball bonding

Hui Xu; Changqing Liu; Vadim V. Silberschmidt; Honghui Wang

Thermosonic copper ball bonding is an absorbing interconnection technology that serves as a viable and cost saving alternative to gold ball bonding. Its excellent mechanical and electrical characteristics make copper ball bonding attractive for high-speed, power devices and fine-pitch applications. However, copper is easily oxidized and harder than gold, which causes some critical process problems in connection with bondability. In this study, a 50 mum copper wire with purity of 99.99% was bonded on aluminum metallization with thickness 3 mum using an ASM angle 60 automatic thermosonic ball/wedge bonder. Experimental studies of copper free air balls (FABs) formation and bonding process were conducted to establish the bonding mechanism and to explain the effects of process parameters on bondability. A micro-slipping model was proposed to account for the effects of the ultrasonic power and bonding force on bondability. It was found that the bondability was determined by a slip area at the bonding interface. The occurrence of bonding only at the periphery of the contact area between FAB and aluminum metallization was attributed to partial slips at the bonding interface. Variation in the ultrasonic power and bonding force that lead to different stick-slip modes, can effect bondability in the ultrasonic bonding process. It is important to set a proper bonding time to achieve interatomic bonding without causing fatigue rupture of microjoints. It was also found that preheating of the chip to a certain temperature can improve bondability.


International Journal of Experimental and Computational Biomechanics | 2010

Thermal analysis of orthogonal cutting of cortical bone using finite element simulations

Khurshid Alam; A.V. Mitrofanov; Vadim V. Silberschmidt

Bone cutting is widely used in orthopaedic, dental and neuro surgeries and is a technically demanding surgical procedure. One of the major concerns in current research is thermal damage of the bone tissue caused by high-speed power tools, which occurs when temperature rises above a certain threshold value for the tissue known as bone necrosis. Hence, optimisation of cutting parameters is necessary to avoid thermal necrosis and improve current orthopaedic surgical procedures. In this study a thermo-mechanical finite element model of bone cutting is presented that idealises cortical bone as an equivalent homogeneous isotropic material. The maximum temperature in the bone was found in the region where the thin bone layer (chip) was separated from the bone sample that was adjacent to the tool rake (i.e., front face of the tool). Temperature values were calculated with the model and compared for cutting conditions with and without a coolant (irrigation). The influence of bones thermal properties on the depth of thermal necrosis is discussed. The simulated cutting temperatures were compared with experimental results obtained in bone drilling tests. Simulations of the cutting processes identified critical variables and cutting parameters affecting thermo-mechanics of bone cutting.


Journal of Materials Science | 2016

Strength prediction for bi-axial braided composites by a multi-scale modelling approach

Chen Wang; Yucheng Zhong; P. F. Bernad Adaikalaraj; Xianbai Ji; Anish Roy; Vadim V. Silberschmidt; Zhong Chen

Braided textile-reinforced composites have become increasingly attractive as protection materials thanks to their unique inter-weaving structures and excellent energy-absorption capacity. However, development of adequate models for simulation of failure processes in them remains a challenge. In this study, tensile strength and progressive damage behaviour of braided textile composites are predicted by a multi-scale modelling approach. First, a micro-scale model with hexagonal arrays of fibres was built to compute effective elastic constants and yarn strength under different loading conditions. Instead of using cited values, the input data for this micro-scale model were obtained experimentally. Subsequently, the results generated by this model were used as input for a meso-scale model. At meso-scale, Hashin’s 3D with Stassi’s failure criteria and a modified Murakami-type stiffness-degradation scheme was employed in a user-defined subroutine developed in the general-purpose finite-element software Abaqus/Standard. An overall stress–strain curve of a meso-scale representative unit cell was verified with the experimental data. Numerical studies show that bias yarns suffer continuous damage during an axial tension test. The magnitudes of ultimate strengths and Young’s moduli of the studied braided composites decreased with an increase in the braiding angle.


Applied Composite Materials | 2012

Experimental and Numerical Analysis of Damage in Woven GFRP Composites Under Large-deflection Bending

Himayat Ullah; Andy R. Harland; Vadim V. Silberschmidt

Textile-reinforced composites such as glass fibre-reinforced polymer (GFRP) used in sports products can be exposed to different in-service conditions such as large bending deformation and multiple impacts. Such loading conditions cause high local stresses and strains, which result in multiple modes of damage and fracture in composite laminates due to their inherent heterogeneity and non-trivial microstructure. In this paper, various damage modes in GFRP laminates are studied using experimental material characterisation, non-destructive micro-structural damage evaluation and numerical simulations. Experimental tests are carried out to characterise the behaviour of these materials under large-deflection bending. To obtain in-plane shear properties of laminates, tensile tests are performed using a full-field strain-measurement digital image correlation technique. X-ray micro computed tomography (Micro CT) is used to investigate internal material damage modes – delamination and cracking. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus to study the deformation behaviour and damage in GFRP. In these models, multiple layers of bilinear cohesive-zone elements are employed to study the onset and progression of inter-ply delamination and intra-ply fabric fracture of composite laminate, based on the X-ray Micro CT study. The developed numerical models are capable to simulate these features with their mechanisms as well as subsequent mode coupling observed in tests and Micro CT scanning. The obtained results of simulations are in agreement with experimental data.

Collaboration


Dive into the Vadim V. Silberschmidt's collaboration.

Top Co-Authors

Avatar

Anish Roy

Loughborough University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Memis Acar

Loughborough University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhong Chen

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Behnam Pourdeyhimi

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge