Vadim Vostrotin
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vadim Vostrotin.
Health Physics | 2013
Victor V. Khokhryakov; Valentin F. Khokhryakov; Klara G. Suslova; Vadim Vostrotin; Vladimir Vvedensky; Alexandra B. Sokolova; Melinda Krahenbuhl; A. Birchall; Scott C. Miller; Anatoly E. Schadilov; Alexander V. Ephimov
AbstractA new modification of the prior human lung compartment plutonium model, Doses-2005, has been described. The modified model was named “Mayak Worker Dosimetry System-2008” (MWDS-2008). In contrast to earlier models developed for workers at the Mayak Production Association (Mayak PA), the new model more correctly describes plutonium biokinetics and metabolism in pulmonary lymph nodes. The MWDS-2008 also provides two sets of doses estimates: one based on bioassay data and the other based on autopsy data, where available. The algorithm of internal dose calculation from autopsy data will be described in a separate paper. Results of comparative analyses of Doses-2005 and MWDS-2008 are provided. Perspectives on the further development of plutonium dosimetry are discussed.
Health Physics | 2002
Valentin F. Khokhryakov; Klara G. Suslova; Vadim Vostrotin; Sergey A. Romanov; Zoya S. Menshikh; Tamara I. Kudryavtseva; Ronald E. Filipy; Scott C. Miller; Melinda P. Krahenbuhl
The purpose of this study was to develop a biokinetic model that uses urinary plutonium excretion rate data to estimate the plutonium accumulation in the human respiratory tract after occupational exposure. The model is based on autopsy and urinalysis data, specifically the plutonium distribution between the respiratory tract and the remainder of the body, taken from 543 former workers of a radiochemical facility at the Mayak Production Association (MPA) plant. The metabolism of plutonium was represented with a compartmental model, which considers individual exposure histories and the inherent solubility properties of industrial plutonium aerosols. The transport properties of plutonium-containing aerosols were estimated by experimentally defining their in vitro solubility. The in vitro solubilities were found by dialysis in a Ringer’s solution. Analysis of the autopsy data indicated that a considerable fraction of the inhaled plutonium is systemically redistributed rapidly after inhalation. After the initial dynamic period, a three-compartment model describes the retention in the respiratory tract. One compartment describes the nuclide retained in the lungs, the second compartment describes a plutonium lung concentration that exponentially decreases with time, and the third compartment describes the concentration in the pulmonary lymph nodes. The model parameters were estimated by minimizing sum squared of the error between the tissue and bioassay data and the model results. The parameters reflect the inverse relationship between plutonium retention in lungs and the experimentally derived aerosol transportability. The model was validated by comparing the autopsy results with in vivo data for 347 cases. The validation indicates that the model parameters are unbiased. This model is being used to estimate individual levels of nuclide accumulation and to compute radiation doses based upon the urinary excretion rates.
Health Physics | 2000
Valentin F. Khokhryakov; Klara G. Suslova; Ronald E. Filipy; J. R. Alldredge; E. E. Aladova; S. E. Glover; Vadim Vostrotin
The United States Transuranium and Uranium Registries (USTUR) and the Dosimetry Registry of the Mayak Industrial Association (DRMIA) have been independently collecting tissues at autopsy of plutonium workers in their respective countries for nearly 30 y. The tissues are analyzed radiochemically and the analytical data are used to develop, modify, or refine biokinetic models that describe the depositions and translocations of plutonium and transplutonium elements in the human body. The purpose of this collaborative research project is to combine the unique information on humans, gathered by the two Registries, into a joint database and perform analyses of the data. A series of project tasks are directly concerned with dosimetry in Mayak workers and involve biokinetic modeling for actinide elements. Transportability coefficients derived from in-vitro solubility measurements of actinide-containing aerosols (as measured by the DRMIA) were related to specific workplaces within Mayak facilities. The transportability coefficients of inhaled aerosols significantly affected the translocation rates of plutonium from the respiratory tract to the systemic circulation. Parameters for a simplified lung model, used by Branch No. 1, Federal Research Center Institute of Biophysics (FIB-1) and the Mayak Production Association for dose assessment at long times after inhalation of plutonium-containing aerosols, were developed on the basis of joint USTUR and DRMIA data. This model has separate sets of deposition and transfer parameters for three aerosol transportability groups, allowing work histories of the workers to be considered in the dose-assessment process. FIB-1 biokinetic models were extended to include the distributions of actinide elements in systemic organs of workers, and a relationship between the health of individual workers and plutonium distribution in tissues was determined. Workers who suffered from liver diseases generally had a smaller fraction of systemic plutonium in the liver at death and a larger fraction in the skeleton than did relatively healthy workers. Also, the fraction of total systemic plutonium excreted per day was significantly greater for workers with liver diseases than for relatively healthy workers. These observations could have a considerable effect on organ dosimetry in health-impaired workers whose dose assessments were based solely on urinary excretion rates. A comparison of this model to other biokinetic models, such as those published by the International Commission for Radiological Protection, is currently underway as is the documentation of uncertainty estimates associated with the model.
Health Physics | 2007
John D. Bess; Melinda P. Krahenbuhl; Scott C. Miller; David M. Slaughter; Viktor V. Khokhryakov; Valentin F. Khokhryakov; Klara G. Suslova; Vadim Vostrotin
The Doses-2005 model is a combination of the International Commission on Radiological Protection (ICRP) models modified using data from the Mayak Production Association cohort. Surrogate doses from inhaled plutonium can be assigned to approximately 29% of the Mayak workers using their urine bioassay measurements and other history records. The purpose of this study was to quantify and qualify the uncertainties in the estimates for radiation doses calculated with the Doses-2005 model by using Monte Carlo methods and perturbation theory. The average uncertainty in the yearly dose estimates for most organs was approximately 100% regardless of the transportability classification. The relative source of the uncertainties comes from three main sources: 45% from the urine bioassay measurements, 29% from the Doses-2005 model parameters, and 26% from the reference masses for the organs. The most significant reduction in the overall dose uncertainties would result from improved methods in bioassay measurement with additional improvements generated through further model refinement. Additional uncertainties were determined for dose estimates resulting from changes in the transportability classification and the smoking toggle. A comparison was performed to determine the effect of using the model with data from either urine bioassay or autopsy data; no direct correlation could be established. Analysis of the model using autopsy data and incorporation of results from other research efforts that have utilized plutonium ICRP models could improve the Doses-2005 model and reduce the overall uncertainty in the dose estimates.
Health Physics | 2002
Melinda P. Krahenbuhl; David M. Slaughter; Justin L. Wilde; John D. Bess; Scott C. Miller; Valentin F. Khokhryakov; Klara G. Suslova; Vadim Vostrotin; Sergey A. Romanov; Zoya S. Menshikh; Tamara I. Kudryavtseva
One of the objectives of the Joint Coordinating Committee for Radiation Effects Research Project 2.4 is to document the methodology used to determine the radiation doses in workers from the Mayak Production Association who were exposed to plutonium. The doses have been employed in numerous dose response studies measuring both stochastic and deterministic effects. This article documents both the historical (pre-1999) and current (“Doses 1999”) methods used by the FIB-1 scientists to determine the doses. Both methods are based on a three-chamber lung model developed by the FIB-1 scientists. This method was developed in partial isolation from the West and has unique characteristics from the more familiar ICRP biokinetic models. Some of these characteristics are the use of empirically based transportability classifications and the parameter modification for chelation-therapy-enhanced excretion data. An example dose calculation is provided and compared to the dose that would be obtained if the ICRP models were used. The comparison demonstrates that the models are not interchangeable and produce different results.
Health Physics | 2005
Melinda P. Krahenbuhl; John D. Bess; Justin L. Wilde; Vadim Vostrotin; Klara G. Suslova; Valentin F. Khokhryakov; David M. Slaughter; Scott C. Miller
A method is presented to determine the uncertainties in the reported dose due to incorporated plutonium for the Mayak Worker Cohort. The methodology includes errors generated by both detection methods and modeling methods. To accomplish the task, the method includes classical statistics, Monte Carlo, perturbation, and reliability groupings. Uncertainties are reported in percent of reported dose as a function of total body burden. The cohort was initially sorted into six reliability groups, with “A” being the data set that the investigators are most confident is correct and “G” being the data set with the most ambiguous data. Categories were adjusted based on preliminary calculation of uncertainties using the sorting criteria. Specifically, the impact of transportability (the parameter used to describe the transport of plutonium from the lung to systemic organs) was underestimated, and the structure of the sort was reorganized to reflect the impact of transportability. The finalized categories are designated with Roman numerals I through V, with “I” being the most reliable. Excluding Category V (neither bioassay nor autopsy), the highest uncertainty in lung doses is for individuals from Category IV—which ranged from 90–375% for total body burdens greater than 10 Bq, along with work histories that indicated exposure to more than one transportability class. The smallest estimated uncertainties for lung doses were determined by autopsy. Category I has a 32–38% uncertainty in the lung dose for total body burdens greater than 1 Bq. First, these results provide a further definition and characterization of the cohort and, second, they provide uncertainty estimates for these plutonium exposure categories.
Radiation Protection Dosimetry | 2016
Alexandra B. Sokolova; А. Birchall; Alexander Efimov; Vadim Vostrotin; M.-D. Dorrian
In order to estimate doses of workers exposed to plutonium, it is necessary to make assumptions about both the route and the time course of intake. The objective of this study was to determine a time course for the inhalation rate for plutonium (intake regime) useful for biokinetic modeling. Records from workplace air sampling, personnel biophysical examinations and autopsy data from former Mayak Production Association (MPA) workers were used. Plutonium accumulation strongly correlated with the volumetric activity of plutonium in workplace air. Using data from activity in air at MPA workplaces over time, a three-step function of intake was adopted. The adequacy of this three-step function was tested by comparing predicted doses using more complicated intake regimes. Uncertainties on the three-step function were also characterized based on air sampling data. The three-step function was assumed to be common to all workers, but an individual intake regime for each worker was calculated by convoluting it with the workers actual employment history.
Radiation Protection Dosimetry | 2017
Vadim Vostrotin; A. Birchall; Alexey Zhdanov; M. Puncher
In order to check developed software tools, it was necessary to compare estimates of statistical characteristics of annual absorbed plutonium internal doses obtained by PANDORA and IMBA software with the same original data. The results were compared from dose calculations of five cases with different initial data on plutonium inhalation intake, lifetime measurements of plutonium activity in daily urine and post-mortem measurements in lungs, lung lymph nodes, liver and skeleton. Estimates of geometric mean and geometric standard deviation of annual regionally weighted lung dose and bone surface dose were compared. Satisfactory agreements of the estimates of statistical characteristics of annual doses to two critical organs for the selected cases were shown. One hundred individual hyper-realizations (forward model evaluations) are sufficient to calculate MWDS-2013 if only measurements of plutonium activity in daily urine are used, and 2000 individual hyper-realizations if both urine and autopsy measurement results are used.
Radiation Protection Dosimetry | 2016
M.-D. Dorrian; A. Birchall; Vadim Vostrotin
The calculation of reliable and realistic doses for use in epidemiological studies for the quantification of risk from internal exposure to radioactive material is fundamental to the development of advice, guidance and regulations for the control and use of radioactive material. Thus, any programme of work carried out which requires the calculation of doses for use by epidemiologists ideally should contain a rigorous program of quality assurance (QA). This paper describes the initial QA (Phase I) implemented by Public Health England (PHE) and the Southern Urals Biophysics Institute (SUBI) as part of the work programme on internal dosimetry in the Joint Coordinating Committee for Radiation Effects Research Project 2.4 for the 2013 Mayak Worker Dosimetry System. SUBI designed and implemented new software (PANDORA) to include the latest Mayak Worker Dosimetry System and to calculate organ burdens, urinary excretion rates, intakes and absorbed doses, while PHE modified their commercially available IMBA Professional Plus software package. Comparisons of output from the two codes for the Mayak Worker Dosimetry System 2013 showed calculated values of absorbed doses, intakes, organ burdens and urinary excretion agreed to within 1%. The 1% discrepancy can be explained by the approximation used in IMBA to speed up dose calculations.
PLOS ONE | 2017
Zhuo Zhang; Dale L. Preston; Mikhail Sokolnikov; Bruce A. Napier; Marina Degteva; Brian Moroz; Vadim Vostrotin; Elena Shiskina; A. Birchall; Daniel O. Stram
In epidemiological studies, exposures of interest are often measured with uncertainties, which may be independent or correlated. Independent errors can often be characterized relatively easily while correlated measurement errors have shared and hierarchical components that complicate the description of their structure. For some important studies, Monte Carlo dosimetry systems that provide multiple realizations of exposure estimates have been used to represent such complex error structures. While the effects of independent measurement errors on parameter estimation and methods to correct these effects have been studied comprehensively in the epidemiological literature, the literature on the effects of correlated errors, and associated correction methods is much more sparse. In this paper, we implement a novel method that calculates corrected confidence intervals based on the approximate asymptotic distribution of parameter estimates in linear excess relative risk (ERR) models. These models are widely used in survival analysis, particularly in radiation epidemiology. Specifically, for the dose effect estimate of interest (increase in relative risk per unit dose), a mixture distribution consisting of a normal and a lognormal component is applied. This choice of asymptotic approximation guarantees that corrected confidence intervals will always be bounded, a result which does not hold under a normal approximation. A simulation study was conducted to evaluate the proposed method in survival analysis using a realistic ERR model. We used both simulated Monte Carlo dosimetry systems (MCDS) and actual dose histories from the Mayak Worker Dosimetry System 2013, a MCDS for plutonium exposures in the Mayak Worker Cohort. Results show our proposed methods provide much improved coverage probabilities for the dose effect parameter, and noticeable improvements for other model parameters.