Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vadim Yuferov is active.

Publication


Featured researches published by Vadim Yuferov.


European Journal of Pharmacology | 2000

Opioid receptor and peptide gene polymorphisms: potential implications for addictions

K. Steven LaForge; Vadim Yuferov; Mary Jeanne Kreek

Addictions to drugs of abuse and alcohol have been shown by studies of genetic epidemiology to have both a heritable and an environmental basis, with these factors influencing addiction to different substances to a different extent. In the search for specific alleles of specific genes that may contribute to the development of the addictions, many researchers have focused on the endogenous opioid system, which mediates a diverse array of neurological, physiological, and behavioral functions. The endogenous opioid system is also centrally important in mediating the effects of drugs of abuse and alcohol. Polymorphisms, including single nucleotide polymorphisms, have been identified in genes of the endogenous opioid receptors and peptides. A number of recent genetic association studies and a few studies of potential function provide clues as to which genes and which alleles may have implications for human physiology and pathophysiology, including the addictions.


Trends in Neurosciences | 2012

κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction

Eduardo R. Butelman; Vadim Yuferov; Mary Jeanne Kreek

Addictions to cocaine or heroin/prescription opioids [short-acting μ-opioid receptor (MOPr) agonists] involve relapsing cycles, with experimentation/escalating use, withdrawal/abstinence, and relapse/re-escalation. κ-Opioid receptors (KOPr; encoded by OPRK1), and their endogenous agonists, the dynorphins (encoded by PDYN), have counter-modulatory effects on reward caused by cocaine or MOPr agonist exposure, and exhibit plasticity in addictive-like states. KOPr/dynorphin activation is implicated in depression/anxiety, often comorbid with addictions. In this opinion article we propose that particular stages of the addiction cycle are differentially affected by KOPr/dynorphin systems. Vulnerability and resilience can be due to pre-existing (e.g., genetic) factors, or epigenetic modifications of the OPRK1 or PDYN genes during the addiction cycle. Pharmacotherapeutic approaches limiting changes in KOPr/dynorphin tone, especially with KOPr partial agonists, may hold potential for the treatment of specific drug addictions and psychiatric comorbidity.


Neuropsychopharmacology | 2009

Increased OPRM1 DNA Methylation in Lymphocytes of Methadone Maintained Former Heroin Addicts

David A. Nielsen; Vadim Yuferov; Sara C. Hamon; Colin Jackson; Ann Ho; Jurg Ott; Mary Jeanne Kreek

The μ-opioid receptor is the site of action of opiates and opioids. We examined whether there are differences in cytosine:guanine (CpG) dinucleotide methylation in the OPRM1 promoter between former heroin addicts and controls. We analyzed methylation at 16 CpG dinucleotides in DNA obtained from lymphocytes of 194 Caucasian former severe heroin addicts stabilized in methadone maintenance treatment and 135 Caucasian control subjects. Direct sequencing of bisulfite-treated DNA showed that the percent methylation at two CpG sites was significantly associated with heroin addiction. The level of methylation at the −18 CpG site was 25.4% in the stabilized methadone-maintained former heroin addicts and 21.4% in controls (p=0.0035, generalized estimating equations (GEE); p=0.0077, t-test; false discovery rate (FDR)=0.048), and the level of methylation at the +84 CpG dinucleotide site was 7.4% in cases and 5.6% in controls (p=0.0095, GEE; p=0.0067, t-test; FDR=0.080). Both the −18 and the +84 CpG sites are located in potential Sp1 transcription factor-binding sites. Methylation of these CpG sites may lead to reduced OPRM1 expression in the lymphocytes of these former heroin addicts.


Annals of the New York Academy of Sciences | 2010

Search for genetic markers and functional variants involved in the development of opiate and cocaine addiction and treatment.

Vadim Yuferov; Orna Levran; Dmitri Proudnikov; David A. Nielsen; Mary Jeanne Kreek

Addiction to opiates and illicit use of psychostimulants is a chronic, relapsing brain disease that, if left untreated, can cause major medical, social, and economic problems. This article reviews recent progress in studies of association of gene variants with vulnerability to develop opiate and cocaine addictions, focusing primarily on genes of the opioid and monoaminergic systems. In addition, we provide the first evidence of a cis‐acting polymorphism and a functional haplotype in the PDYN gene, of significantly higher DNA methylation rate of the OPRM1 gene in the lymphocytes of heroin addicts, and significant differences in genotype frequencies of three single‐nucleotide polymorphisms of the P‐glycoprotein gene (ABCB1) between “higher” and “lower” methadone doses in methadone‐maintained patients. In genomewide and multigene association studies, we found association of several new genes and new variants of known genes with heroin addiction. Finally, we describe the development and application of a novel technique: molecular haplotyping for studies in genetics of drug addiction.


Addiction Biology | 2005

Microarray studies of psychostimulant-induced changes in gene expression.

Vadim Yuferov; David A. Nielsen; Eduardo R. Butelman; Mary Jeanne Kreek

Alterations in the expression of multiple genes in many brain regions are likely to contribute to psychostimulant‐induced behaviours. Microarray technology provides a powerful tool for the simultaneous interrogation of gene expression levels of a large number of genes. Several recent experimental studies, reviewed here, demonstrate the power, limitations and progress of microarray technology in the field of psychostimulant addiction. These studies vary in the paradigms of cocaine or amphetamine administration, drug doses, route and also mode of administration, duration of treatment, animal species, brain regions studied and time of tissue collection after final drug administration. The studies also utilize different microarray platforms and statistical techniques for analysis of differentially expressed genes. These variables influence substantially the results of these studies. It is clear that current microarray techniques cannot detect small changes reliably in gene expression of genes with low expression levels, including functionally significant changes in components of major neurotransmission systems such as glutamate, dopamine, opioid and GABA receptors, especially those that may occur after chronic drug administration or drug withdrawal. However, the microarray studies reviewed here showed cocaine‐ or amphetamine‐induced alterations in the expression of numerous genes involved in the modulation of neuronal growth, cytoskeletal structures, synaptogenesis, signal transduction, apoptosis and cell metabolism. Application of laser capture microdissection and single‐cell cDNA amplification may greatly enhance microarray studies of gene expression profiling. The combination of rapidly evolving microarray technology with established methods of neuroscience, molecular biology and genetics, as well as appropriate behavioural models of drug reinforcement, may provide a productive approach for delineating the neurobiological underpinnings of drug responses that lead to addiction.


American Journal of Medical Genetics | 2000

Detection of single nucleotide polymorphisms of the human mu opioid receptor gene by hybridization or single nucleotide extension on custom oligonucleotide gelpad microchips: Potential in studies of addiction

K. Steven LaForge; Valentin Shick; Rudolph Spangler; Dmitri Proudnikov; Vadim Yuferov; Yuri Lysov; Andrei Mirzabekov; Mary Jeanne Kreek

The human mu opioid receptor (MOR) plays a central role in mediating the effects of opioids, both endogenous and exogenous. Epidemiological studies have shown that addiction in general, and especially opiate addiction, has a heritable component. Clinical and laboratory studies suggest that the MOR gene may contribute to the heritable component of vulnerability to develop opiate addiction. Naturally occurring single nucleotide polymorphisms (SNPs) have been identified in the MOR gene by conventional methods. Two coding region SNPs, the A118G and C17T substitutions, occur at high allelic frequencies (10.5% and 6.6%, respectively, in our previous studies). These common SNPs cause amino acid changes in the receptor, and may have implications for differences in individual responses to opioids, as well as decreased or increased vulnerability to opiate addiction. The A118G substitution encodes a variant receptor with binding and signal transduction differences in response to beta-endorphin in cellular assays. Recent innovations in microchip technology offer new potential methods for SNP detection. We report here on the development of two separate approaches using custom oligonucleotide gelpad microarrays for detection of these two common SNPs of the MOR gene in human DNA samples. First, PCR-amplified genomic DNA samples were used to produce target sequences, which were labeled with fluorescent dye and hybridized to custom microchips. Oligonucleotides on these reusable microchips were designed to query nucleotide substitutions at positions 17 and 118 of the MOR gene. Thirty-six human DNA samples were assayed both on these custom microchips and by conventional automated gel sequencing, with highly concordant identification of both heterozygous and homozygous substitutions. A second approach was developed for the C17T SNP utilizing single nucleotide extension on custom microchips. These custom gelpad microchips have potential for the rapid and inexpensive detection of specific SNPs for genetic and genomic studies.


Molecular Psychiatry | 2008

Genotype patterns that contribute to increased risk for or protection from developing heroin addiction

David A. Nielsen; Fei Ji; Vadim Yuferov; Ann Ho; A Chen; Orna Levran; Jurg Ott; Mary Jeanne Kreek

A genome-wide association study was conducted using microarray technology to identify genes that may be associated with the vulnerability to develop heroin addiction, using DNA from 104 individual former severe heroin addicts (meeting Federal criteria for methadone maintenance) and 101 individual control subjects, all Caucasian. Using separate analyses for autosomal and X chromosomal variants, we found that the strongest associations of allele frequency with heroin addiction were with the autosomal variants rs965972, located in the Unigene cluster Hs.147755 (experiment-wise q=0.053), and rs1986513 (q=0.187). The three variants exhibiting the strongest association with heroin addiction by genotype frequency were rs1714984, located in an intron of the gene for the transcription factor myocardin (P=0.000022), rs965972 (P=0.000080) and rs1867898 (P=0.000284). One genotype pattern (AG-TT-GG) was found to be significantly associated with developing heroin addiction (odds ratio (OR)=6.25) and explained 27% of the population attributable risk for heroin addiction in this cohort. Another genotype pattern (GG-CT-GG) of these variants was found to be significantly associated with protection from developing heroin addiction (OR=0.13), and lacking this genotype pattern explained 83% of the population attributable risk for developing heroin addiction. Evidence was found for involvement of five genes in heroin addiction, the genes coding for the μ opioid receptor, the metabotropic receptors mGluR6 and mGluR8, nuclear receptor NR4A2 and cryptochrome 1 (photolyase-like). This approach has identified several new genes potentially associated with heroin addiction and has confirmed the role of OPRM1 in this disease.


Neuropsychopharmacology | 2009

A Functional Haplotype Implicated in Vulnerability to Develop Cocaine Dependence is Associated with Reduced PDYN Expression in Human Brain

Vadim Yuferov; Fei Ji; David A. Nielsen; Orna Levran; Ann Ho; Susan Morgello; Ruijin Shi; Jurg Ott; Mary Jeanne Kreek

Dynorphin peptides and the κ-opioid receptor are important in the rewarding properties of cocaine, heroin, and alcohol. We tested polymorphisms of the prodynorphin gene (PDYN) for association with cocaine dependence and cocaine/alcohol codependence. We genotyped six single nucleotide polymorphisms (SNPs), located in the promoter region, exon 4 coding, and 3′ untranslated region, in 106 Caucasians and 204 African Americans who were cocaine dependent, cocaine/alcohol codependent, or controls. In Caucasians, we found point-wise significant associations of 3′UTR SNPs (rs910080, rs910079, and rs2235749) with cocaine dependence and cocaine/alcohol codependence. These SNPs are in high linkage disequilibrium, comprising a haplotype block. The haplotype CCT was significantly experiment-wise associated with cocaine dependence and with combined cocaine dependence and cocaine/alcohol codependence (false discovery rate, q=0.04 and 0.03, respectively). We investigated allele-specific gene expression of PDYN, using SNP rs910079 as a reporter, in postmortem human brains from eight heterozygous subjects, using SNaPshot assay. There was significantly lower expression for C allele (rs910079), with ratios ranging from 0.48 to 0.78, indicating lower expression of the CCT haplotype of PDYN in both the caudate and nucleus accumbens. Analysis of total PDYN expression in 43 postmortem brains also showed significantly lower levels of preprodynorphin mRNA in subjects having the risk CCT haplotype. This study provides evidence that a 3′UTR PDYN haplotype, implicated in vulnerability to develop cocaine addiction and/or cocaine/alcohol codependence, is related to lower mRNA expression of the PDYN gene in human dorsal and ventral striatum.


Human Genetics | 2012

The genetics of the opioid system and specific drug addictions

Orna Levran; Vadim Yuferov; Mary Jeanne Kreek

Addiction to drugs is a chronic, relapsing brain disease that has major medical, social, and economic complications. It has been established that genetic factors contribute to the vulnerability to develop drug addiction and to the effectiveness of its treatment. Identification of these factors may increase our understanding of the disorders, help in the development of new treatments and advance personalized medicine. In this review, we will describe the genetics of the major genes of the opioid system (opioid receptors and their endogenous ligands) in connection to addiction to opioids, cocaine, alcohol and methamphetamines. Particular emphasis is given to association and functional studies of specific variants. We will provide information on the sample populations and the size of each study, as well as a list of the variants implicated in association with addiction-related phenotypes, and with the effectiveness of pharmacotherapy for addiction.


Psychoneuroendocrinology | 2003

Neuroendocrine alterations in a high-dose, extended-access rat self-administration model of escalating cocaine use

John R. Mantsch; Vadim Yuferov; Anne-Marie Mathieu-Kia; Ann Ho; Mary Jeanne Kreek

One approach for studying cocaine addiction has been to permit escalating patterns of self-administration (SA) by rats by prolonging daily drug availability. Rats provided long access (LgA) to high cocaine doses, but not rats provided shorter cocaine access (ShA), progressively escalate their cocaine intake and display characteristics of human addiction. The purpose of the present study was to investigate the effects of 14 days of ShA or LgA, high-dose cocaine SA on plasma corticosterone (CORT), prolactin (PRL), and related mRNAs. Acutely, cocaine SA increased plasma CORT and reduced plasma PRL levels. SA training produced circadian increases in CORT that appeared to occur in anticipation of cocaine availability. With repeated LgA, high-dose SA, the daily CORT area under the curve (AUC) progressively decreased, apparently due to tolerance to cocaines effects on CORT and a reduction in basal CORT levels. In contrast, the daily CORT AUC in ShA rats increased across testing despite constant rates of SA. When measured 12 days after SA testing, pro-opioimelanocortin and glucocorticoid receptor mRNA levels in the anterior pituitary were lower in LgA rats than in ShA rats. The effects of SA on PRL remained constant across SA testing in LgA rats, but increased in duration in ShA rats. Anterior pituitary dopamine D2 receptor mRNA levels were lower in LgA rats than in ShA rats. These findings indicate that the transition to escalating patterns of SA may be associated with altered levels of hormones and gene expression within neuroendocrine systems. Such changes may underlie the onset of human addictive disease.

Collaboration


Dive into the Vadim Yuferov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Ho

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Yan Zhou

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

David A. Nielsen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jurg Ott

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Orna Levran

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge