Vafa Ziaei
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vafa Ziaei.
Journal of Chemical Physics | 2016
Vafa Ziaei; Thomas Bredow
In this work, we apply many-body perturbation theory (MBPT) on large critical charge transfer (CT) complexes to assess its performance on the S1 excitation energy. Since the S1 energy of CT compounds is heavily dependent on the Hartree-Fock (HF) exchange fraction in the reference density functional, MBPT opens a new way for reliable prediction of CT S1 energy without explicit knowledge of suitable amount of HF-exchange, in contrary to the time-dependent density functional theory (TD-DFT), where depending on various functionals, large errors can arise. Thus, simply by starting from a (semi-)local reference functional and performing update of Kohn-Sham (KS) energies in the Greens function G while keeping dynamical screened interaction (W(ω)) frozen to the mean-field level, we obtain impressingly highly accurate S1 energy at slightly higher computational cost in comparison to TD-DFT. However, this energy-only updating mechanism in G fails to work if the initial guess contains a fraction or 100% HF-exchange, and hence considerably inaccurate S1 energy is predicted. Furthermore, eigenvalue updating both in G and W(ω) overshoots the S1 energy due to enhanced underscreening of W(ω), independent of the (hybrid-)DFT starting orbitals. A full energy-update on top of HF orbitals even further overestimates the S1 energy. An additional update of KS wave functions within the Quasi-Particle Self-Consistent GW (QSGW) deteriorates results, in stark contrast to the good results obtained from QSGW for periodic systems. For the sake of transferability, we further present data of small critical non-charge transfer systems, confirming the outcomes of the CT-systems.
ChemPhysChem | 2017
Vafa Ziaei; Thomas Bredow
The reliable calculation of the excited states of charge-transfer (CT) compounds poses a major challenge to the ab initio community because the frequently employed method, time-dependent density functional theory (TD-DFT), massively relies on the underlying density functional, resulting in heavily Hartree-Fock (HF) exchange-dependent excited-state energies. By applying the highly sophisticated many-body perturbation approach, we address the encountered unreliabilities and inconsistencies of not optimally tuned (standard) TD-DFT regarding photo-excited CT phenomena, and present results concerning accurate vertical transition energies and the correct energetic ordering of the CT and the first visible singlet state of a recently synthesized thermodynamically stable large hybrid perylene bisimide-macrocycle complex. This is a large-scale application of the quantum many-body perturbation approach to a chemically relevant CT system, demonstrating the system-size independence of the quality of the many-body-based excitation energies. Furthermore, an optimal tuning of the ωB97X hybrid functional can well reproduce the many-body results, making TD-DFT a suitable choice but at the expense of introducing a range-separation parameter, which needs to be optimally tuned.
Journal of Chemical Physics | 2016
Vafa Ziaei; Thomas Bredow
In the present paper, accurate optical absorption spectrum of liquid H2O is calculated in the energy range of 5–20 eV to probe the nature of water’s excited states by means of many body perturbation approach. Main features of recent inelastic X-ray measurements are well reproduced, such as a bound excitonic peak at 7.9 eV with a shoulder at 9.4 eV as well as the absorption maximum at 13.9 eV, followed by a broad shoulder at 18.4 eV. The spectrum is dominated by excitonic effects impacting the structures of the spectrum at low and higher energy regimes mixed by single particle effects at high energies. The exciton distribution of the low-energy states, in particular of S1, is highly anisotropic and localized mostly on one water molecule. The S1 state is essentially a HOCO-LUCO (highest occupied crystal orbital - lowest unoccupied crystal orbital) transition and of intra-molecular type, showing a localized valence character. Once the excitation energy is increased, a significant change in the character of t...
Journal of Chemical Physics | 2016
Vafa Ziaei; Thomas Bredow
In the present work, we accurately calculate the absorption spectrum of liquid ammonia up to 13 eV using many-body perturbation approach. The electronic bandgap of liquid NH3 is perfectly described as the combination of density functional theory, Coulomb-hole screened exchange, and G0W0 approximation to the electronic self-energy, yielding a direct gap (Γ → Γ) of 7.71 eV, fully consistent with the experimentally measured gap from photo-emission spectroscopy. With respect to the NH3 optical properties, the entire spectrum in particular the low lying first absorption band is extremely affected by electron-hole interactions, leading to a fundamental redistribution of spectral weights of the independent-particle spectrum. Three well separated but broad main peaks are identified at 7.0, 9.8, and 11.8 eV with steadily increasing intensities in excellent agreement with the experimental data. Furthermore, we observe a giant net blue-shift of the first absorption peak of about 1.4 eV from gaseous to liquid phase as the direct consequence of many-body effects, allowing the associated liquid ammonia absorption band exciton to delocalize and feel more effectively the repulsion effects imposed by the surrounding solvent shells. Further, the spectrum is insensitive to the coupling of resonant and anti-resonant contributions. Concerning electronic response structure of liquid NH3, it is most sensitive to excitations at energies lower than its electronic gap.
Physical Review B | 2017
Vafa Ziaei; Thomas Bredow
We propose a simple many-body based screening mixing strategy to considerably enhance the performance of the Bethe-Salpeter (BS) approach for prediction of excitation energies of molecular systems. This strategy enables us to nearly reproduce results of highly correlated equation of motion coupled cluster singles and doubles (EOM-CCSD) through optimal use of cancellation effects.
Physical Review B | 2017
Vafa Ziaei; Thomas Bredow
Journal of Physics: Condensed Matter | 2018
Vafa Ziaei; Thomas Bredow
Journal of Physics: Condensed Matter | 2018
Vafa Ziaei; Thomas Bredow
Physical Review B | 2017
Vafa Ziaei; Thomas Bredow
Archive | 2017
Vafa Ziaei; Thomas Bredow