Vahid Ansari
University of Paderborn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vahid Ansari.
Optics Express | 2013
Georg Harder; Vahid Ansari; Benjamin Brecht; Thomas Dirmeier; Christoph Marquardt; Christine Silberhorn
We implement an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecommunication wavelengths with almost identical properties between signal and idler. As such, our source resembles closely a pure, genuine single mode photon pair source with indistinguishable modes. We measure the joint spectral intensity distribution and second order correlation functions of the marginal beams and find with both methods very low effective mode numbers corresponding to a Schmidt number below 1.16. We further demonstrate the indistinguishability as well as the purity of signal and idler photons by Hong-Ou-Mandel interferences between signal and idler and between signal/idler and a coherent field, respectively. Without using narrowband spectral filtering, we achieve a visibility for the interference between signal and idler of 94.8% and determine a purity of more than 80% for the heralded single photon states. Moreover, we measure raw heralding efficiencies of 20.5% and 15.5% for the signal and idler beams corresponding to detector-loss corrected values of 80% and 70%.
Physical Review Letters | 2015
J. Sperling; M. Bohmann; W. Vogel; Georg Harder; Benjamin Brecht; Vahid Ansari; Christine Silberhorn
We report on the implementation of a time-multiplexed click detection scheme to probe quantum correlations between different spatial optical modes. We demonstrate that such measurement setups can uncover nonclassical correlations in multimode light fields even if the single mode reductions are purely classical. The nonclassical character of correlated photon pairs, generated by a parametric down-conversion, is immediately measurable employing the theory of click counting instead of low-intensity approximations with photoelectric detection models. The analysis is based on second- and higher-order moments, which are directly retrieved from the measured click statistics, for relatively high mean photon numbers. No data postprocessing is required to demonstrate the effects of interest with high significance, despite low efficiencies and experimental imperfections. Our approach shows that such novel detection schemes are a reliable and robust way to characterize quantum-correlated light fields for practical applications in quantum communications.
conference on lasers and electro optics | 2017
Markus Allgaier; Vahid Ansari; Linda Sansoni; Christof Eigner; Viktor Quiring; Raimund Ricken; Georg Harder; Benjamin Brecht; Christine Silberhorn
We demonstrate an engineered sum-frequency-conversion process in lithium nio-bate that provides a bandwidth compression factor of 7.47 at a high efficiency of 61.5 %, thus outperforming spectral filtering. The process preserves non-classical photon-number statistics.
Optics Express | 2018
Vahid Ansari; Emanuele Roccia; Matteo Santandrea; Mahnaz Doostdar; Christof Eigner; Laura Padberg; Ilaria Gianani; Marco Sbroscia; John M. Donohue; Luca Mancino; Marco Barbieri; Christine Silberhorn
We experimentally demonstrate a source of nearly pure single photons in arbitrary temporal shapes heralded from a parametric down-conversion (PDC) source at telecom wavelengths. The technology is enabled by the tailored dispersion of in-house fabricated waveguides with shaped pump pulses to directly generate the PDC photons in on-demand temporal shapes. We generate PDC photons in Hermite-Gauss and frequency-binned modes and confirm a minimum purity of 0.81, even for complex temporal shapes.
Physical Review A | 2017
Vahid Ansari; Georg Harder; Markus Allgaier; Benjamin Brecht; Christine Silberhorn
Encoding quantum information in the photon temporal mode (TM) offers a robust platform for high-dimensional quantum protocols. The main practical challenge, however, is to design a device that operates on single photons in specific TMs and all coherent superpositions. The quantum pulse gate (QPG) is a mode-selective sum-frequency generation designed for this task. Here, we perform a full modal characterization of a QPG using weak coherent states in well-defined TMs. We reconstruct a full set of measurement operators, which show an average fidelity of 0.85 to a theoretically ideal device when operating on a seven-dimensional space. Then we use these characterized measurement operators of the QPG to calibrate the device. Using the calibrated device and a tomographically complete set of measurements, we show that the QPG can perform high-dimensional TM state tomography with 0.99 fidelity.
arXiv: Quantum Physics | 2017
Markus Allgaier; Gesche Vigh; Vahid Ansari; Christof Eigner; Viktor Quiring; Raimund Ricken; Benjamin Brecht; Christine Silberhorn
Direct measurements on the temporal envelope of quantum light are a challenging task and not many examples are known because most classical pulse characterisation methods do not work on the single-photon level. Knowledge of both spectrum and timing can, however, give insights on properties that cannot be determined by the spectral intensity alone. While temporal measurements on single photons on timescales of tens of picoseconds are possible with superconducting photon detectors, and picosecond measurements have been performed using streak cameras, there are no commercial single-photon sensitive devices with femtosecond resolution available. While time-domain sampling using sum-frequency generation has already been exploited for such a measurement, inefficient conversion has necessitated long integration times to build the temporal profile. We demonstrate a highly efficient waveguided sum-frequency generation process in Lithium Niobate to measure the temporal envelope of single photons with femtosecond resolution with short enough acquisition time to provide a live-view of the measurement. We demonstrate the measurement technique and combine it with spectral measurements using a dispersive-fibre time-of-flight spectrometer to determine upper and lower bounds for the spectral purity of heralded single photons. The approach complements the joint spectral intensity measurements as a measure on the purity can be given without knowledge of the spectral phase.
New Journal of Physics | 2018
Johannes Tiedau; V. S. Shchesnovich; D. Mogilevtsev; Vahid Ansari; Georg Harder; Tim J. Bartley; Natalia Korolkova; Christine Silberhorn
VS acknowledge support from the National Council for Scientific and Technological Development (CNPq) of Brazil, grant 304129/2015-1, and by the Sao Paulo Research Foundation (FAPESP), grant 2015/23296-8. DM acknowledge support from the EUproject Horizon-2020 SUPERTWIN id.686731, the National Academy of Sciences of Belarus program ‘Convergence’ and FAPESP grant 2014/21188-0. NK acknowledges the support from the Scottish Universities Physics Alliance (SUPA) and from the International Max Planck Partnership (IMPP) with Scottish Universities. JT and CS acknowledge support from European Union Grant No. 665148 (QCUMbER). TB acknowledges support from theDFG under TRR 142.
Applied Physics Letters | 2018
Markus Allgaier; Vahid Ansari; Christof Eigner; Viktor Quiring; Raimund Ricken; John M. Donohue; Thomas Czerniuk; Marc Aßmann; M. Bayer; Benjamin Brecht; Christine Silberhorn
Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.
Philosophical Transactions of the Royal Society A | 2017
Georg Harder; Vahid Ansari; Tim J. Bartley; Benjamin Brecht; Christine Silberhorn
In the last few decades, there has been much progress on low loss waveguides, very efficient photon-number detectors and nonlinear processes. Engineered sum-frequency conversion is now at a stage where it allows operation on arbitrary temporal broadband modes, thus making the spectral degree of freedom accessible for information coding. Hereby the information is often encoded into the temporal modes of a single photon. Here, we analyse the prospect of using multi-photon states or squeezed states in different temporal modes based on integrated optics devices. We describe an analogy between mode-selective sum-frequency conversion and a network of spatial beam splitters. Furthermore, we analyse the limits on the achievable squeezing in waveguides with current technology and the loss limits in the conversion process. This article is part of the themed issue ‘Quantum technology for the 21st century’.
photonics society summer topical meeting series | 2013
Andreas Christ; Benjamin Brecht; Georg Harder; Andreas Eckstein; Vahid Ansari; Cosmo Lupo; Christine Silberhorn
Using ultrafast multimode PDC sources and optical quantum pulse gates based on engineered frequency conversion processes we introduce multiplexed quantum information coding and show that it enables an exponential increase in the achievable quantum communication rate.