Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vaibhav Agarwal is active.

Publication


Featured researches published by Vaibhav Agarwal.


Journal of Immunology | 2007

The Host Immune Regulator Factor H Interacts via Two Contact Sites with the PspC Protein of Streptococcus pneumoniae and Mediates Adhesion to Host Epithelial Cells

Sven Hammerschmidt; Vaibhav Agarwal; Anja Kunert; Steffi Haelbich; Christine Skerka; Peter F. Zipfel

Pneumococcal surface protein C (PspC) of Streptococcus pneumoniae is a key virulence factor that mediates adhesion to host cells and immune evasion of the host complement. PspC binds the host immune and complement regulator factor H, which is composed of 20 short consensus repeats (SCR). This interaction contributes to pneumococcal virulence. In this study, we identified within the factor H protein two separate PspC binding regions, which were localized to SCR8–11 and SCR19–20, by using recombinant factor H deletion constructs for Western blotting assays and surface plasmon resonance studies. A detailed analysis of binding epitopes in these SCR by peptide spot arrays identified several linear binding regions within the sequences of SCR8–11 and SCR19–20. In addition, the factor H binding site was mapped within the pneumococcal PspC protein to a 121-aa-long stretch positioned in the N terminus (residues 38–158). Factor H attached to the surface of pneumococci via PspC significantly enhanced pneumococcal adherence to host epithelial and endothelial cells. This adhesion was specific and was blocked with a truncated N-terminal factor H-binding fragment of PspC. In conclusion, the acquisition of factor H by pneumococci via PspC occurs via two contact sites located in SCR8–11 and SCR19–20, and factor H attached to the surface of the pneumococcus promotes adhesion to both host epithelial and endothelial cells.


Journal of Cell Science | 2009

Integrin-linked kinase is required for vitronectin-mediated internalization of Streptococcus pneumoniae by host cells

Simone Bergmann; Anke Lang; Manfred Rohde; Vaibhav Agarwal; Claudia Rennemeier; Carsten Grashoff; Klaus T. Preissner; Sven Hammerschmidt

By interacting with components of the human host, including extracellular matrix (ECM) proteins, Streptococcus pneumoniae has evolved various strategies for colonization. Here, we characterized the interaction of pneumococci with the adhesive glycoprotein vitronectin and the contribution of this protein to pneumococcal uptake by host cells in an integrin-dependent manner. Specific interaction of S. pneumoniae with the heparin-binding sites of purified multimeric vitronectin was demonstrated by flow cytometry analysis. Host-cell-bound vitronectin promoted pneumococcal adherence to and invasion into human epithelial and endothelial cells. Pneumococci were trapped by microspike-like structures, which were induced upon contact of pneumococci with host-cell-bound vitronectin. αvβ3 integrin was identified as the major cellular receptor for vitronectin-mediated adherence and uptake of pneumococci. Ingestion of pneumococci by host cells via vitronectin required a dynamic actin cytoskeleton and was dependent on integrin-linked kinase (ILK), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt), as demonstrated by gene silencing or in inhibition experiments. In conclusion, pneumococci exploit the vitronectin–αvβ3-integrin complex as a cellular receptor for invasion and this integrin-mediated internalization requires the cooperation between the host signalling molecules ILK, PI3K and Akt.


Journal of Biological Chemistry | 2010

Complement Regulator Factor H Mediates a Two-step Uptake of Streptococcus pneumoniae by Human Cells

Vaibhav Agarwal; Tauseef M. Asmat; Shanshan Luo; Inga Jensch; Peter F. Zipfel; Sven Hammerschmidt

Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8–11 and SCR19–20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19–20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase.


Journal of Immunology | 2012

Enolase of Streptococcus pneumoniae Binds Human Complement Inhibitor C4b-Binding Protein and Contributes to Complement Evasion

Vaibhav Agarwal; Sven Hammerschmidt; Sven Malm; Simone Bergmann; Kristian Riesbeck; Anna M. Blom

Streptococcus pneumoniae (pneumococcus) is a pathogen that causes severe local and life-threatening invasive diseases, which are associated with high mortality rates. Pneumococci have evolved several strategies to evade the host immune system, including complement to disseminate and to survive in various host niches. Thus, pneumococci bind complement inhibitors such as C4b-binding protein (C4BP) and factor H via pneumococcal surface protein C, thereby inhibiting the classical and alternative complement pathways. In this study, we identified the pneumococcal glycolytic enzyme enolase, a nonclassical cell surface and plasminogen-binding protein, as an additional pneumococcal C4BP-binding protein. Furthermore, we demonstrated that human, but not mouse, C4BP bound pneumococci. Recombinant enolase bound in a dose-dependent manner C4BP purified from plasma, and the interaction was reduced by increasing ionic strength. Enolase recruited C4BP and plasminogen, but not factor H, from human serum. Moreover, C4BP and plasminogen bound to different domains of enolase as they did not compete for the interaction with enolase. In direct binding assays with recombinant C4BP mutants lacking individual domains, two binding sites for enolase were identified on the complement control protein (CCP) domain 1/CCP2 and CCP8 of the C4BP α-chains. C4BP bound to the enolase retained its cofactor activity as determined by C4b degradation. Furthermore, in the presence of exogenously added enolase, an increased C4BP binding to and subsequently decreased C3b deposition on pneumococci was observed. Taken together, pneumococci specifically interact with human C4BP via enolase, which represents an additional mechanism of human complement control by this versatile pathogen.


Journal of Biological Chemistry | 2013

Streptococcus pneumoniae endopeptidase O (PepO): a multifunctional plasminogen and fibronectin binding protein, facilitating evasion of innate immunity and invasion of host cells.

Vaibhav Agarwal; Arunakar Kuchipudi; Marcus Fulde; Kristian Riesbeck; Simone Bergmann; Anna M. Blom

Background: Pneumococci have developed multiple strategies to infect the host. Results: PepO is a ubiquitously expressed pneumococcal protein that interacts with host proteins and facilitates host cell invasion and evasion of innate immunity. Conclusion: PepO is a plasminogen- and fibronectin-binding pneumococcal invasin. Significance: Understanding the mechanism of pneumococcal interaction with host aids designing better therapeutical strategies and gaining control over the pathogen. Streptococcus pneumoniae infections remain a major cause of morbidity and mortality worldwide. Therefore a detailed understanding and characterization of the mechanism of host cell colonization and dissemination is critical to gain control over this versatile pathogen. Here we identified a novel 72-kDa pneumococcal protein endopeptidase O (PepO), as a plasminogen- and fibronectin-binding protein. Using a collection of clinical isolates, representing different serotypes, we found PepO to be ubiquitously present both at the gene and protein level. In addition, PepO protein was secreted in a growth phase-dependent manner to the culture supernatants of the pneumococcal isolates. Recombinant PepO bound human plasminogen and fibronectin in a dose-dependent manner and plasminogen did not compete with fibronectin for binding PepO. PepO bound plasminogen via lysine residues and the interaction was influenced by ionic strength. Moreover, upon activation of PepO-bound plasminogen by urokinase-type plasminogen activator, generated plasmin cleaved complement protein C3b thus assisting in complement control. Furthermore, direct binding assays demonstrated the interaction of PepO with epithelial and endothelial cells that in turn blocked pneumococcal adherence. Moreover, a pepO-mutant strain showed impaired adherence to and invasion of host cells compared with their isogenic wild-type strains. Taken together, the results demonstrated that PepO is a ubiquitously expressed plasminogen- and fibronectin-binding protein, which plays role in pneumococcal invasion of host cells and aids in immune evasion.


Journal of Biological Chemistry | 2009

Cdc42 and the phosphatidylinositol 3-kinase-Akt pathway are essential for PspC-mediated internalization of pneumococci by respiratory epithelial cells.

Vaibhav Agarwal; Sven Hammerschmidt

The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae, the cause of lobar pneumonia and invasive diseases. PspC interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. By adopting the retrograde machinery of human pIgR, this protein-protein interaction promotes colonization and transcytosis across the epithelial layer. Here, we explored the role of Rho family guanosine triphosphatases (GTPases), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) for ingestion of pneumococci via the human pIgR. Inhibition experiments suggested that the host-cell actin microfilaments and microtubules are essential for this pneumococcal uptake mechanism. By using specific GTPase-modifying toxins, inhibitors, and GTPase expression constructs we demonstrate that Cdc42, but not Rac1 and RhoA are involved in PspC-mediated invasion of pneumococci into host cells. Accordingly, Cdc42 is time-dependently activated during ingestion of pneumococci. In addition, PI3K and Akt are essential for ingestion of pneumococci by respiratory epithelial cells via the PspC-pIgR interaction. The subunit p85α of PI3K and Akt was activated during the infection process. Moreover, Akt activation upon pneumococcal invasion depends on PI3K. In conclusion, our results illustrate for the first time key signaling molecules of host cells that are required for PspC-pIgR-mediated invasion of pneumococci into epithelial cells. This unique and specific bacterial entry process is dependent on the cooperation and activation of Rho family GTPase Cdc42, PI3K, and Akt.


Journal of Biological Chemistry | 2014

Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence

Vaibhav Agarwal; Magdalena Sroka; Marcus Fulde; Simone Bergmann; Kristian Riesbeck; Anna M. Blom

Background: A detailed understanding of how pneumococci interact with the human host aids development of novel therapeutics. Results: PepO binds complement protein C1q and C4BP mediating pneumococcal-host cell adherence and evasion of the complement-mediated attack. Conclusion: PepO contributes to pneumococcal virulence. Significance: Pneumococci have multiple interrelated invasion and survival strategies. The Gram-positive species Streptococcus pneumoniae is a human pathogen causing severe local and life-threatening invasive diseases associated with high mortality rates and death. We demonstrated recently that pneumococcal endopeptidase O (PepO) is a ubiquitously expressed, multifunctional plasminogen and fibronectin-binding protein facilitating host cell invasion and evasion of innate immunity. In this study, we found that PepO interacts directly with the complement C1q protein, thereby attenuating the classical complement pathway and facilitating pneumococcal complement escape. PepO binds both free C1q and C1 complex in a dose-dependent manner based on ionic interactions. Our results indicate that recombinant PepO specifically inhibits the classical pathway of complement activation in both hemolytic and complement deposition assays. This inhibition is due to direct interaction of PepO with C1q, leading to a strong activation of the classical complement pathway, and results in consumption of complement components. In addition, PepO binds the classical complement pathway inhibitor C4BP, thereby regulating downstream complement activation. Importantly, pneumococcal surface-exposed PepO-C1q interaction mediates bacterial adherence to host epithelial cells. Taken together, PepO facilitates C1q-mediated bacterial adherence, whereas its localized release consumes complement as a result of its activation following binding of C1q, thus representing an additional mechanism of human complement escape by this versatile pathogen.


Journal of Biological Chemistry | 2014

Streptococcus pneumoniae phosphoglycerate kinase is a novel complement inhibitor affecting the membrane attack complex formation.

Anna M. Blom; Simone Bergmann; Marcus Fulde; Kristian Riesbeck; Vaibhav Agarwal

Background: Pneumococci employ multiple strategies to escape host complement attack. Results: PGK directly inhibits MAC formation and aids degradation of C3b by plasminogen. Conclusion: PGK is a novel complement inhibitor. Significance: The findings expand our knowledge of complement evasion by pneumococci and encourage a search for the role of the MAC in defense against Gram-positive pathogens. The Gram-positive bacterium Streptococcus pneumoniae is a major human pathogen that causes infections ranging from acute otitis media to life-threatening invasive disease. Pneumococci have evolved several strategies to circumvent the host immune response, in particular the complement attack. The pneumococcal glycolytic enzyme phosphoglycerate kinase (PGK) is both secreted and bound to the bacterial surface and simultaneously binds plasminogen and its tissue plasminogen activator tPA. In the present study we demonstrate that PGK has an additional role in modulating the complement attack. PGK interacted with the membrane attack complex (MAC) components C5, C7, and C9, thereby blocking the assembly and membrane insertion of MAC resulting in significant inhibition of the hemolytic activity of human serum. Recombinant PGK interacted in a dose-dependent manner with these terminal pathway proteins, and the interactions were ionic in nature. In addition, PGK inhibited C9 polymerization both in the fluid phase and on the surface of sheep erythrocytes. Interestingly, PGK bound several MAC proteins simultaneously. Although C5 and C7 had partially overlapping binding sites on PGK, C9 did not compete with either one for PGK binding. Moreover, PGK significantly inhibited MAC deposition via both the classical and alternative pathway at the pneumococcal surface. Additionally, upon activation plasmin(ogen) bound to PGK cleaved the central complement protein C3b thereby further modifying the complement attack. In conclusion, our data demonstrate for the first time to our knowledge a novel pneumococcal inhibitor of the terminal complement cascade aiding complement evasion by this important pathogen.


Journal of Biological Chemistry | 2013

Binding of complement inhibitor C4b-binding protein to a highly virulent S. pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells.

David Ermert; Antonin Weckel; Vaibhav Agarwal; Inga-Maria Frick; Lars Björck; Anna M. Blom

Background: Pathogens such as Streptococcus pyogenes acquire protection by binding complement inhibitors to their surface. Results: Domain A of protein H binds to C4BP CCP1–2, increasing invasiveness. Conclusion: Protein H but not M1 protein is the major virulence factor mediating invasion and preventing C3b deposition. Significance: Understanding molecular details of host pathogen interactions is crucial for development of novel therapeutics. Streptococcus pyogenes AP1, a strain of the highly virulent M1 serotype, uses exclusively protein H to bind the complement inhibitor C4b-binding protein (C4BP). We found a strong correlation between the ability of AP1 and its isogenic mutants lacking protein H to inhibit opsonization with complement C3b and binding of C4BP. C4BP bound to immobilized protein H or AP1 bacteria retained its cofactor activity for degradation of 125I-C4b. Furthermore, C4b deposited from serum onto AP1 bacterial surfaces was processed into C4c/C4d fragments, which did not occur on strains unable to bind C4BP. Recombinant C4BP mutants, which (i) lack certain CCP domains or (ii) have mutations in single aa as well as (iii) mutants with additional aa between different CCP domains were used to determine that the binding is mainly mediated by a patch of positively charged amino acid residues at the interface of domains CCP1 and CCP2. Using recombinant protein H fragments, we narrowed down the binding site to the N-terminal domain A. With a peptide microarray, we identified one single 18-amino acid-long peptide comprising residues 92–109, which specifically bound C4BP. Biacore was used to determine KD = 6 × 10−7 m between protein H and a single subunit of C4BP. C4BP binding also correlated with elevated levels of adhesion and invasion to endothelial cells. Taken together, we identified the molecular basis of C4BP-protein H interaction and found that it is not only important for decreased opsonization but also for invasion of endothelial cells by S. pyogenes.


Journal of Biological Chemistry | 2011

Streptococcus pneumoniae Infection of Host Epithelial Cells via Polymeric Immunoglobulin Receptor Transiently Induces Calcium Release from Intracellular Stores

Tauseef M. Asmat; Vaibhav Agarwal; Susann Räth; Jan-Peter Hildebrandt; Sven Hammerschmidt

The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca2+]i) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca2+]i from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca2+]i was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca2+]i. In addition, we demonstrated the effect of [Ca2+]i on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca2+-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ATPase, which increases [Ca2+]i in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca2+]i from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial internalization by host epithelial cells.

Collaboration


Dive into the Vaibhav Agarwal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simone Bergmann

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marcus Fulde

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge