Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vaibhav P. Pai is active.

Publication


Featured researches published by Vaibhav P. Pai.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Mammary gland homeostasis employs serotonergic regulation of epithelial tight junctions

Malinda A. Stull; Vaibhav P. Pai; Archie J. Vomachka; Aaron M. Marshall; George A. Jacob; Nelson D. Horseman

Homeostatic control of volume within the alveolar spaces of the mammary gland has been proposed to involve a feedback system mediated by serotonin signaling. In this article, we describe some of the mechanisms underlying this feedback based on studies of a human normal mammary epithelial cell line (MCF10A) and mouse mammary epithelium. Mammary serotonin was elevated during lactation and after injection of 5-hydroxytryptophan (5-HTP). The genes encoding the serotonin reuptake transporter (SERT) and the type 7 serotonin receptor (5-HT7) were expressed in human and mouse mammary epithelial cells, and serotonin caused a concentration-dependent increase of cAMP in MCF10A cells. Mouse and human mammary epithelial cells formed polarized membranes, in which tight junction activity was monitored. Treatment of mammary epithelial membranes with serotonin receptor antagonists increased their transepithelial electrical resistance (TEER). Antagonist and agonist effects on TEER were mediated by receptors on the basolateral face of the membranes. Our results suggest a process in which serotonin accumulates in the interstitial fluid surrounding the mammary secretory epithelium and is detected by 5-HT7 receptors, whereupon milk secretion is inhibited. One mechanism responsible for this process is serotonin-mediated opening of tight junctions, which dissipates the transepithelial gradients necessary for milk secretion.


Development | 2012

Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis

Vaibhav P. Pai; Sherry Aw; Tal Shomrat; Joan M. Lemire; Michael Levin

Uncovering the molecular mechanisms of eye development is crucial for understanding the embryonic morphogenesis of complex structures, as well as for the establishment of novel biomedical approaches to address birth defects and injuries of the visual system. Here, we characterize change in transmembrane voltage potential (Vmem) as a novel biophysical signal for eye induction in Xenopus laevis. During normal embryogenesis, a striking hyperpolarization demarcates a specific cluster of cells in the anterior neural field. Depolarizing the dorsal lineages in which these cells reside results in malformed eyes. Manipulating Vmem of non-eye cells induces well-formed ectopic eyes that are morphologically and histologically similar to endogenous eyes. Remarkably, such ectopic eyes can be induced far outside the anterior neural field. A Ca2+ channel-dependent pathway transduces the Vmem signal and regulates patterning of eye field transcription factors. These data reveal a new, instructive role for membrane voltage during embryogenesis and demonstrate that Vmem is a crucial upstream signal in eye development. Learning to control bioelectric initiators of organogenesis offers significant insight into birth defects that affect the eye and might have significant implications for regenerative approaches to ocular diseases.


Breast Cancer Research | 2009

Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival

Vaibhav P. Pai; Aaron M. Marshall; Laura L. Hernandez; Arthur R. Buckley; Nelson D. Horseman

IntroductionThe breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers.MethodsSerotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells.ResultsIn the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation.ConclusionsOur data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer.


Journal of Biological Chemistry | 2008

Biphasic Regulation of Mammary Epithelial Resistance by Serotonin through Activation of Multiple Pathways

Vaibhav P. Pai; Nelson D. Horseman

Mammary gland homeostasis and the lactation-to-involution switch are regulated by serotonin (5-hydroxytryptamine (5-HT)). Mammary epithelial tight junctions are physiological targets of 5-HT, and their disruption marks an early stage of mammary gland involution. In these studies, we have identified signal transduction mechanism employed by 5-HT during regulation of mammary gland transepithelial resistance. Transepithelial electrical resistance and tight junction protein architecture were studied in cultures of MCF10A human mammary epithelial cells. Serotonin had biphasic effects on mammary epithelial resistance. At lower concentrations and earlier time points, 5-HT potentiated epithelial transmembrane resistance, whereas at higher concentrations and later time points, 5-HT decreased transepithelial electrical resistance and disrupted tight junctions. Both the early and delayed actions of 5-HT were mediated by the 5-HT7 receptor through activation of Gs/cAMP. 5-HT induced the activities of both protein kinase A and p38 mitogen-activated protein kinase. Inhibition of p38 mitogen-activated protein kinase abrogated 5-HT-induced disruption of mammary epithelial tight junctions (the delayed effect). In contrast, inhibition of protein kinase A prevented the increased epithelial resistance in response to 5-HT (the transient effect). These studies imply an integrated set of mechanisms whereby transient, modest activation of 5-HT7 promotes tight junction integrity, and sustained 5-HT7 activation drives involution by disrupting tight junctions.


The Journal of Neuroscience | 2015

Endogenous Gradients of Resting Potential Instructively Pattern Embryonic Neural Tissue via Notch Signaling and Regulation of Proliferation

Vaibhav P. Pai; Joan M. Lemire; Jean François Paré; Gufa Lin; Ying Chen; Michael Levin

Biophysical forces play important roles throughout embryogenesis, but the roles of spatial differences in cellular resting potentials during large-scale brain morphogenesis remain unknown. Here, we implicate endogenous bioelectricity as an instructive factor during brain patterning in Xenopus laevis. Early frog embryos exhibit a characteristic hyperpolarization of cells lining the neural tube; disruption of this spatial gradient of the transmembrane potential (Vmem) diminishes or eliminates the expression of early brain markers, and causes anatomical mispatterning of the brain, including absent or malformed regions. This effect is mediated by voltage-gated calcium signaling and gap-junctional communication. In addition to cell-autonomous effects, we show that hyperpolarization of transmembrane potential (Vmem) in ventral cells outside the brain induces upregulation of neural cell proliferation at long range. Misexpression of the constitutively active form of Notch, a suppressor of neural induction, impairs the normal hyperpolarization pattern and neural patterning; forced hyperpolarization by misexpression of specific ion channels rescues brain defects induced by activated Notch signaling. Strikingly, hyperpolarizing posterior or ventral cells induces the production of ectopic neural tissue considerably outside the neural field. The hyperpolarization signal also synergizes with canonical reprogramming factors (POU and HB4), directing undifferentiated cells toward neural fate in vivo. These data identify a new functional role for bioelectric signaling in brain patterning, reveal interactions between Vmem and key biochemical pathways (Notch and Ca2+ signaling) as the molecular mechanism by which spatial differences of Vmem regulate organogenesis of the vertebrate brain, and suggest voltage modulation as a tractable strategy for intervention in certain classes of birth defects.


F1000Research | 2014

Shaping the Future of Research: a perspective from junior scientists

Gary S. McDowell; Kearney T. W. Gunsalus; Drew C. MacKellar; Sarah A. Mazzilli; Vaibhav P. Pai; Patricia R. Goodwin; Erica M. Walsh; Avi Robinson-Mosher; Thomas A. Bowman; James Kraemer; Marcella L. Erb; Eldi Schoenfeld; Leila Shokri; Jonathan D. Jackson; Ayesha Islam; Matthew D. Mattozzi; Kristin A. Krukenberg; Jessica K. Polka

The landscape of scientific research and funding is in flux as a result of tight budgets, evolving models of both publishing and evaluation, and questions about training and workforce stability. As future leaders, junior scientists are uniquely poised to shape the culture and practice of science in response to these challenges. A group of postdocs in the Boston area who are invested in improving the scientific endeavor, planned a symposium held on October 2 nd and 3 rd, 2014, as a way to join the discussion about the future of US biomedical research. Here we present a report of the proceedings of participant-driven workshops and the organizers’ synthesis of the outcomes.


Regeneration (Oxford, England) | 2016

Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation.

Vaibhav P. Pai; Christopher J. Martyniuk; Karen Echeverri; Sarah Sundelacruz; David L. Kaplan; Michael Levin

Abstract Endogenous bioelectric signaling via changes in cellular resting potential (V mem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of V mem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re‐specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome‐wide transcriptional responses to V mem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to V mem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of V mem change, and also revealed important (well‐conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that V mem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies.


Cell and Tissue Research | 2009

In vitro multipotent differentiation and barrier function of a human mammary epithelium

Aaron M. Marshall; Vaibhav P. Pai; Maureen A. Sartor; Nelson D. Horseman

As demonstrated by a variety of animal studies, barrier function in the mammary epithelium is essential for a fully functioning and differentiated gland. However, there is a paucity of information on barrier function in human mammary epithelium. Here, we have established characteristics of a polarizing differentiating model of human mammary epithelial cells capable of forming a high-resistance/low-conductance barrier in a predictable manner, viz., by using MCF10A cells on permeable membranes. Inulin flux decreased and transepithelial electrical resistance (TEER) increased over the course of several days after seeding MCF10A cells on permeable membranes. MCF10A cells exhibited multipotent phenotypic differentiation into layers expressing basal and lumenal markers when placed on permeable membranes, with at least two distinct cell phenotypes. A clonal subline of MCF10A, generated by culturing stem-like cells under non-adherent conditions, also generated a barrier-forming epithelial membrane with cells expressing markers of both basal and lumenal differentiation (CD10 and MUC1, respectively). Progressive changes associated with differentiation, including wholesale inhibition of cell-cycle genes and stimulation of cell and tissue morphogenic genes, were observed by gene expression profiling. Clustering and gene ontology categorization of significantly altered genes revealed a pattern of lumenal epithelial-cell-specific differentiation.


PLOS ONE | 2011

Multiple Cellular Responses to Serotonin Contribute to Epithelial Homeostasis

Vaibhav P. Pai; Nelson D. Horseman

Epithelial homeostasis incorporates the paradoxical concept of internal change (epithelial turnover) enabling the maintenance of anatomical status quo. Epithelial cell differentiation and cell loss (cell shedding and apoptosis) form important components of epithelial turnover. Although the mechanisms of cell loss are being uncovered the crucial triggers that modulate epithelial turnover through regulation of cell loss remain undetermined. Serotonin is emerging as a common autocrine-paracine regulator in epithelia of multiple organs, including the breast. Here we address whether serotonin affects epithelial turnover. Specifically, serotonins roles in regulating cell shedding, apoptosis and barrier function of the epithelium. Using in vivo studies in mouse and a robust model of differentiated human mammary duct epithelium (MCF10A), we show that serotonin induces mammary epithelial cell shedding and disrupts tight junctions in a reversible manner. However, upon sustained exposure, serotonin induces apoptosis in the replenishing cell population, causing irreversible changes to the epithelial membrane. The staggered nature of these events induced by serotonin slowly shifts the balance in the epithelium from reversible to irreversible. These finding have very important implications towards our ability to control epithelial regeneration and thus address pathologies of aberrant epithelial turnover, which range from degenerative disorders (e.g.; pancreatitis and thyrioditis) to proliferative disorders (e.g.; mastitis, ductal ectasia, cholangiopathies and epithelial cancers).


Stem Cells International | 2012

Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry

Vaibhav P. Pai; Laura N. Vandenberg; Douglas J. Blackiston; Michael Levin

Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V mem) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V mem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.

Collaboration


Dive into the Vaibhav P. Pai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nian-Qing Shi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Ye

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eldi Schoenfeld

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge