Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vaibhav Rajan is active.

Publication


Featured researches published by Vaibhav Rajan.


IEEE/ACM Transactions on Computational Biology and Bioinformatics | 2012

A Metric for Phylogenetic Trees Based on Matching

Yu Lin; Vaibhav Rajan; Bernard M. E. Moret

Comparing two or more phylogenetic trees is a fundamental task in computational biology. The simplest outcome of such a comparison is a pairwise measure of similarity, dissimilarity, or distance. A large number of such measures have been proposed, but so far all suffer from problems varying from computational cost to lack of robustness; many can be shown to behave unexpectedly under certain plausible inputs. For instance, the widely used Robinson-Foulds distance is poorly distributed and thus affords little discrimination, while also lacking robustness in the face of very small changes-reattaching a single leaf elsewhere in a tree of any size can instantly maximize the distance. In this paper, we introduce a new pairwise distance measure, based on matching, for phylogenetic trees. We prove that our measure induces a metric on the space of trees, show how to compute it in low polynomial time, verify through statistical testing that it is robust, and finally note that it does not exhibit unexpected behavior under the same inputs that cause problems with other measures. We also illustrate its usefulness in clustering trees, demonstrating significant improvements in the quality of hierarchical clustering as compared to the same collections of trees clustered using the Robinson-Foulds distance.


research in computational molecular biology | 2009

Sorting Signed Permutations by Inversions in O(nlogn) Time

Krister M. Swenson; Vaibhav Rajan; Yu Lin; Bernard M. E. Moret

The study of genomic inversions (or reversals) has been a mainstay of computational genomics for nearly 20 years. After the initial breakthrough of Hannenhalli and Pevzner, who gave the first polynomial-time algorithm for sorting signed permutations by inversions, improved algorithms have been designed, culminating with an optimal linear-time algorithm for computing the inversion distance and a subquadratic algorithm for providing a shortest sequence of inversions--also known as sorting by inversions. Remaining open was the question of whether sorting by inversions could be done in O (n logn ) time. In this paper, we present a qualified answer to this question, by providing two new sorting algorithms, a simple and fast randomized algorithm and a deterministic refinement. The deterministic algorithm runs in time O (n logn + kn ), where k is a data-dependent parameter. We provide the results of extensive experiments showing that both the average and the standard deviation for k are small constants, independent of the size of the permutation. We conclude (but do not prove) that almost all signed permutations can be sorted by inversions in O (n logn ) time.


research in computational molecular biology | 2010

Fast and accurate phylogenetic reconstruction from high-resolution whole-genome data and a novel robustness estimator

Yu Lin; Vaibhav Rajan; Bernard M. E. Moret

The rapid accumulation of whole-genome data has renewed interest in the study of genomic rearrangements. Comparative genomics, evolutionary biology, and cancer research all require models and algorithms to elucidate the mechanisms, history, and consequences of these rearrangements. However, even simple models lead to NP-hard problems, particularly in the area of phylogenetic analysis. Current approaches are limited to small collections of genomes and low-resolution data (typically a few hundred syntenic blocks). Moreover, whereas phylogenetic analyses from sequence data are deemed incomplete unless bootstrapping scores (a measure of confidence) are given for each tree edge, no equivalent to bootstrapping exists for rearrangement-based phylogenetic analysis. We describe a fast and accurate algorithm for rearrangement analysis that scales up, in both time and accuracy, to modern high-resolution genomic data. We also describe a novel approach to estimate the robustness of results-an equivalent to the bootstrapping analysis used in sequence-based phylogenetic reconstruction. We present the results of extensive testing on both simulated and real data showing that our algorithm returns very accurate results, while scaling linearly with the size of the genomes and cubically with their number. We also present extensive experimental results showing that our approach to robustness testing provides excellent estimates of confidence, which, moreover, can be tuned to trade off thresholds between false positives and false negatives. Together, these two novel approaches enable us to attack heretofore intractable problems, such as phylogenetic inference for high-resolution vertebrate genomes, as we demonstrate on a set of six vertebrate genomes with 8,380 syntenic blocks. A copy of the software is available on demand.


research in computational molecular biology | 2008

Hurdles Hardly Have to Be Heeded

Krister M. Swenson; Yu Lin; Vaibhav Rajan; Bernard M. E. Moret

As data about genomic architecture accumulates, genomic rearrangements have attracted increasing attention. One of the main rearrangement mechanisms, inversions (also called reversals), was characterized by Hannenhalli and Pevzner and this characterization in turn extended by various authors. The characterization relies on the concepts of breakpoints, cycles, and obstructions colorfully named hurdles and fortresses. In this paper, we study the probability of generating a hurdle in the process of sorting a permutation if one does not take special precautions to avoid them (as in a randomized algorithm, for instance). To do this we revisit and extend the work of Caprara and of Bergeron by providing simple and exact characterizations of the probability of encountering a hurdle in a random permutation. Using similar methods we, for the first time, find an asymptotically tight analysis of the probability that a fortress exists in a random permutation.


BMC Bioinformatics | 2010

Estimating true evolutionary distances under rearrangements, duplications, and losses

Yu Lin; Vaibhav Rajan; Krister M. Swenson; Bernard M. E. Moret

BackgroundThe rapidly increasing availability of whole-genome sequences has enabled the study of whole-genome evolution. Evolutionary mechanisms based on genome rearrangements have attracted much attention and given rise to many models; somewhat independently, the mechanisms of gene duplication and loss have seen much work. However, the two are not independent and thus require a unified treatment, which remains missing to date. Moreover, existing rearrangement models do not fit the dichotomy between most prokaryotic genomes (one circular chromosome) and most eukaryotic genomes (multiple linear chromosomes).ResultsTo handle rearrangements, gene duplications and losses, we propose a new evolutionary model and the corresponding method for estimating true evolutionary distance. Our model, inspired from the DCJ model, is simple and the first to respect the prokaryotic/eukaryotic structural dichotomy. Experimental results on a wide variety of genome structures demonstrate the very high accuracy and robustness of our distance estimator.ConclusionWe give the first robust, statistically based, estimate of genomic pairwise distances based on rearrangements, duplications and losses, under a model that respects the structural dichotomy between prokaryotic and eukaryotic genomes. Accurate and robust estimates in true evolutionary distances should translate into much better phylogenetic reconstructions as well as more accurate genomic alignments, while our new model of genome rearrangements provides another refinement in simplicity and verisimilitude.


Bioinformatics | 2012

TIBA: a tool for phylogeny inference from rearrangement data with bootstrap analysis

Yu Lin; Vaibhav Rajan; Bernard M. E. Moret

TIBA is a tool to reconstruct phylogenetic trees from rearrangement data that consist of ordered lists of synteny blocks (or genes), where each synteny block is shared with all of its homologues in the input genomes. The evolution of these synteny blocks, through rearrangement operations, is modelled by the uniform Double-Cut-and-Join model. Using a true distance estimate under this model and simple distance-based methods, TIBA reconstructs a phylogeny of the input genomes. Unlike any previous tool for inferring phylogenies from rearrangement data, TIBA uses novel methods of robustness estimation to provide support values for the edges in the inferred tree.


Journal of Computational Biology | 2010

Sorting signed permutations by inversions in O(nlogn) time.

Krister M. Swenson; Vaibhav Rajan; Yu Lin; Bernard M. E. Moret

The study of genomic inversions (or reversals) has been a mainstay of computational genomics for nearly 20 years. After the initial breakthrough of Hannenhalli and Pevzner, who gave the first polynomial-time algorithm for sorting signed permutations by inversions, improved algorithms have been designed, culminating with an optimal linear-time algorithm for computing the inversion distance and a subquadratic algorithm for providing a shortest sequence of inversions--also known as sorting by inversions. Remaining open was the question of whether sorting by inversions could be done in O(nlogn) time. In this article, we present a qualified answer to this question, by providing two new sorting algorithms, a simple and fast randomized algorithm and a deterministic refinement. The deterministic algorithm runs in time O(nlogn + kn), where k is a data-dependent parameter. We provide the results of extensive experiments showing that both the average and the standard deviation for k are small constants, independent of the size of the permutation. We conclude (but do not prove) that almost all signed permutations can be sorted by inversions in O(nlogn) time.


workshop on algorithms in bioinformatics | 2011

Bootstrapping phylogenies inferred from rearrangement data

Yu Lin; Vaibhav Rajan; Bernard M. E. Moret

Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap and of our corresponding new approach over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver-operating characteristics are nearly identical, indicating that it provides similar levels of sensitivity and specificity. Thus our assessment method makes it possible to conduct phylogenetic analyses on whole genomes with the same degree of confidence as for analyses on aligned sequences. Extensions to search-based inference methods such as maximum parsimony and maximum likelihood are possible, but remain to be thoroughly tested.


Journal of Computational Biology | 2009

Hurdles and Sorting by Inversions: Combinatorial, Statistical, and Experimental Results

Krister M. Swenson; Yu Lin; Vaibhav Rajan; Bernard M. E. Moret

As data about genomic architecture accumulates, genomic rearrangements have attracted increasing attention. One of the main rearrangement mechanisms, inversions (also called reversals), was characterized by Hannenhalli and Pevzner and this characterization in turn extended by various authors. The characterization relies on the concepts of breakpoints, cycles, and obstructions colorfully named hurdles and fortresses. In this paper, we study the probability of generating a hurdle in the process of sorting a permutation if one does not take special precautions to avoid them (as in a randomized algorithm, for instance). To do this we revisit and extend the work of Caprara and of Bergeron by providing simple and exact characterizations of the probability of encountering a hurdle in a random permutation. Using similar methods we provide the first asymptotically tight analysis of the probability that a fortress exists in a random permutation. Finally, we study other aspects of hurdles, both analytically and through experiments: when are they created in a sequence of sorting inversions, how much later are they detected, and how much work may need to be undone to return to a sorting sequence.


BMC Bioinformatics | 2010

Heuristics for the inversion median problem

Vaibhav Rajan; Andrew Wei Xu; Yu Lin; Krister M. Swenson; Bernard M. E. Moret

Collaboration


Dive into the Vaibhav Rajan's collaboration.

Top Co-Authors

Avatar

Bernard M. E. Moret

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Yu Lin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Wei Xu

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Yu Lin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge