Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vainav Patel is active.

Publication


Featured researches published by Vainav Patel.


Journal of Biological Chemistry | 2008

Intracellular Interaction of Interleukin-15 with Its Receptor α during Production Leads to Mutual Stabilization and Increased Bioactivity

Cristina Bergamaschi; Margherita Rosati; Rashmi Jalah; Antonio Valentin; Viraj Kulkarni; Candido Alicea; Gen-Mu Zhang; Vainav Patel; Barbara K. Felber; George N. Pavlakis

We show that co-expression of interleukin 15 (IL-15) and IL-15 receptor α (IL-15Rα) in the same cell allows for the intracellular interaction of the two proteins early after translation, resulting in increased stability and secretion of both molecules as a complex. In the absence of co-expressed IL-15Rα, a large portion of the produced IL-15 is rapidly degraded immediately after synthesis. Co-injection into mice of IL-15 and IL-15Rα expression plasmids led to significantly increased levels of the cytokine in serum as well as increased biological activity of IL-15. Examination of natural killer cells and T lymphocytes in mouse organs showed a great expansion of both cell types in the lung, liver, and spleen. The presence of IL-15Rα also increased the number of CD44high memory cells with effector phenotype (CD44highCD62L-). Thus, mutual stabilization of IL-15 and IL-15Rα leads to remarkable increases in production, stability, and tissue availability of bioactive IL-15 in vivo. The in vivo data show that the most potent form of IL-15 is as part of a complex with its receptor α either on the surface of the producing cells or as a soluble extracellular complex. These results explain the reason for coordinate expression of IL-15 and IL-15Rα in the same cell and suggest that the IL-15Rα is part of the active IL-15 cytokine rather than part of the receptor.


Vaccine | 2008

Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation

Margherita Rosati; Antonio Valentin; Rashmi Jalah; Vainav Patel; Agneta von Gegerfelt; Cristina Bergamaschi; Candido Alicea; Deborah Weiss; Jim Treece; Ranajit Pal; Phillip D. Markham; Ernesto T. A. Marques; J. Thomas August; Amir R. Khan; Ruxandra Draghia-Akli; Barbara K. Felber; George N. Pavlakis

We used optimized DNA expression vectors to compare two gene delivery methodologies in rhesus macaques, namely direct DNA injection and in vivo adaptive constant-current electroporation via the intramuscular route. The use of in vivo electroporation increased levels of gene expression and immune responses. We used an optimized HIV gag expression plasmid to show the development of new cellular immune responses in SIV-infected animals controlling viremia. Furthermore, after vaccination with SIV expression plasmids the recall responses to the SIV antigens were very high, indicating that DNA is a strong boost in the presence of antiretroviral treatment in SIV-infected animals. There was substantial animal-to-animal variability in DNA expression, revealed by plasma measurements of IL-15 produced by co-injected IL-15 DNA. IL-15 expression levels correlated with peak immune responses. Electroporation led to an expansion of antigen-specific CD4+ and CD8+ T cells of both central and effector memory phenotype. These results indicate that improved gene delivery and expression by electroporation dramatically increases immunogenicity of DNA vaccines. Electroporation is thus an important method to improve the effectiveness of DNA vaccination.


Proceedings of the National Academy of Sciences of the United States of America | 2009

DNA vaccination in rhesus macaques induces potent immune responses and decreases acute and chronic viremia after SIVmac251 challenge

Margherita Rosati; Cristina Bergamaschi; Antonio Valentin; Viraj Kulkarni; Rashmi Jalah; Candido Alicea; Vainav Patel; Agneta von Gegerfelt; David C. Montefiori; David Venzon; Amir S. Khan; Ruxandra Draghia-Akli; Koen K. A. Van Rompay; Barbara K. Felber; George N. Pavlakis

Optimized plasmid DNAs encoding the majority of SIVmac239 proteins and delivered by electroporation (EP) elicited strong immune responses in rhesus macaques. Vaccination decreased viremia in both the acute and chronic phases of infection after challenge with pathogenic SIVmac251. Two groups of macaques were vaccinated with DNA plasmids producing different antigen forms, “native” and “modified,” inducing distinct immune responses. Both groups showed significantly lower viremia during the acute phase of infection, whereas the group immunized with the native antigens showed better protection during the chronic phase (1.7 log decrease in virus load, P = 0.009). Both groups developed strong cellular and humoral responses against the DNA vaccine antigens, which included Gag, Pol, Env, Nef, and Tat. Vaccination induced both central memory and effector memory T cells that were maintained at the day of challenge, suggesting the potential for rapid mobilization upon virus challenge. The group receiving the native antigens developed higher and more durable anti-Env antibodies, including neutralizing antibodies at the day of challenge. These results demonstrate that DNA vaccination in the absence of any heterologous boost can provide protection from high viremia comparable to any other vaccine modalities tested in this macaque model.


Vaccine | 2010

Long-lasting humoral and cellular immune responses and mucosal dissemination after intramuscular DNA immunization.

Vainav Patel; Antonio Valentin; Viraj Kulkarni; Margherita Rosati; Cristina Bergamaschi; Rashmi Jalah; Candido Alicea; Jacob T. Minang; Matthew T. Trivett; Claes Ohlen; Jun Zhao; Marjorie Robert-Guroff; Amir S. Khan; Ruxandra Draghia-Akli; Barbara K. Felber; George N. Pavlakis

Naïve Indian rhesus macaques were immunized with a mixture of optimized plasmid DNAs expressing several SIV antigens using in vivo electroporation via the intramuscular route. The animals were monitored for the development of SIV-specific systemic (blood) and mucosal (bronchoalveolar lavage) cellular and humoral immune responses. The immune responses were of great magnitude, broad (Gag, Pol, Nef, Tat and Vif), long-lasting (up to 90 weeks post third vaccination) and were boosted with each subsequent immunization, even after an extended 90-week rest period. The SIV-specific cellular immune responses were consistently more abundant in bronchoalveolar lavage (BAL) than in blood, and were characterized as predominantly effector memory CD4(+) and CD8(+) T cells in BAL and as both central and effector memory T cells in blood. SIV-specific T cells containing Granzyme B were readily detected in both blood and BAL, suggesting the presence of effector cells with cytolytic potential. DNA vaccination also elicited long-lasting systemic and mucosal humoral immune responses, including the induction of Gag-specific IgA. The combination of optimized DNA vectors and improved intramuscular delivery by in vivo electroporation has the potential to elicit both cellular and humoral responses and dissemination to the periphery, and thus to improve DNA immunization efficacy.


Proceedings of the National Academy of Sciences of the United States of America | 2013

DNA and virus particle vaccination protects against acquisition and confers control of viremia upon heterologous simian immunodeficiency virus challenge

Vainav Patel; Rashmi Jalah; Viraj Kulkarni; Antonio Valentin; Margherita Rosati; Candido Alicea; Agneta von Gegerfelt; Wensheng Huang; Yongjun Guan; Brandon F. Keele; Julian W. Bess; Michael Piatak; Jeffrey D. Lifson; William T. Williams; Xiaoying Shen; Georgia D. Tomaras; Rama Rao Amara; Harriet L. Robinson; Welkin E. Johnson; Kate E. Broderick; Niranjan Y. Sardesai; David Venzon; Vanessa M. Hirsch; Barbara K. Felber; George N. Pavlakis

We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4+ effector memory, and postchallenge CD8+ transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.


BioMed Research International | 2014

Foeniculum vulgare Mill: A Review of Its Botany, Phytochemistry, Pharmacology, Contemporary Application, and Toxicology

Shamkant B. Badgujar; Vainav Patel; Atmaram H. Bandivdekar

Foeniculum vulgare Mill commonly called fennel has been used in traditional medicine for a wide range of ailments related to digestive, endocrine, reproductive, and respiratory systems. Additionally, it is also used as a galactagogue agent for lactating mothers. The review aims to gather the fragmented information available in the literature regarding morphology, ethnomedicinal applications, phytochemistry, pharmacology, and toxicology of Foeniculum vulgare. It also compiles available scientific evidence for the ethnobotanical claims and to identify gaps required to be filled by future research. Findings based on their traditional uses and scientific evaluation indicates that Foeniculum vulgare remains to be the most widely used herbal plant. It has been used for more than forty types of disorders. Phytochemical studies have shown the presence of numerous valuable compounds, such as volatile compounds, flavonoids, phenolic compounds, fatty acids, and amino acids. Compiled data indicate their efficacy in several in vitro and in vivo pharmacological properties such as antimicrobial, antiviral, anti-inflammatory, antimutagenic, antinociceptive, antipyretic, antispasmodic, antithrombotic, apoptotic, cardiovascular, chemomodulatory, antitumor, hepatoprotective, hypoglycemic, hypolipidemic, and memory enhancing property. Foeniculum vulgare has emerged as a good source of traditional medicine and it provides a noteworthy basis in pharmaceutical biology for the development/formulation of new drugs and future clinical uses.


Human Vaccines & Immunotherapeutics | 2012

IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques

Rashmi Jalah; Vainav Patel; Viraj Kulkarni; Margherita Rosati; Candido Alicea; Brunda Ganneru; Agneta von Gegerfelt; Wensheng Huang; Yongjun Guan; Kate E. Broderick; Niranjan Y. Sardesai; Celia C. LaBranche; David C. Montefiori; George N. Pavlakis; Barbara K. Felber

Intramuscular injection of macaques with an IL-12 expression plasmid (0.1 or 0.4 mg DNA/animal) optimized for high level of expression and delivered using in vivo electroporation, resulted in the detection of systemic IL-12 cytokine in the plasma. Peak levels obtained by day 4–5 post injection were paralleled by a rapid increase of IFN-γ, indicating bioactivity of the IL-12 cytokine. Both plasma IL-12 and IFN-γ levels were reduced to basal levels by day 14, indicating a short presence of elevated levels of the bioactive IL-12. The effect of IL-12 as adjuvant together with an SIVmac239 DNA vaccine was further examined comparing two groups of rhesus macaques vaccinated in the presence or absence of IL-12 DNA. The IL-12 DNA-adjuvanted group developed significantly higher SIV-specific cellular immune responses, including IFN-γ+ Granzyme B+ T cells, demonstrating increased levels of vaccine-induced T cells with cytotoxic potential, and this difference persisted for 6 mo after the last vaccination. Coinjection of IL-12 DNA led to increases in Gag-specific CD4+ and CD4+CD8+ double-positive memory T cell subsets, whereas the Env-specific increases were mainly mediated by the CD8+ and CD4+CD8+ double-positive memory T cell subsets. The IL-12 DNA-adjuvanted vaccine group developed higher binding antibody titers to Gag and mac251 Env, and showed higher and more durable neutralizing antibodies to heterologous SIVsmE660. Therefore, co-delivery of IL-12 DNA with the SIV DNA vaccine enhanced the magnitude and breadth of immune responses in immunized rhesus macaques, and supports the inclusion of IL-12 DNA as vaccine adjuvant.


Vaccine | 2011

Comparison of immune responses generated by optimized DNA vaccination against SIV antigens in mice and macaques

Viraj Kulkarni; Rashmi Jalah; Brunda Ganneru; Cristina Bergamaschi; Candido Alicea; Agneta von Gegerfelt; Vainav Patel; Gen-Mu Zhang; Bhabadeb Chowdhury; Kate E. Broderick; Niranjan Y. Sardesai; Antonio Valentin; Margherita Rosati; Barbara K. Felber; George N. Pavlakis

Optimized DNA vectors were constructed comprising the proteome of SIV including the structural, enzymatic, regulatory, and accessory proteins. In addition to native antigens as produced by the virus, fusion proteins and modified antigens with altered secretion, cellular localization and stability characteristics were generated. The DNA vectors were tested for expression upon transfection in human cells. In addition, the vectors were tested either alone or in combinations in mice and macaques, which provided an opportunity to compare immune responses in two animal models. DNA only immunization using intramuscular injection in the absence or presence of in vivo electroporation did not alter the phenotype of the induced T cell responses in mice. Although several fusion proteins induced immune responses to all the components of a polyprotein, we noted fusion proteins that abrogated immune response to some of the components. Since the expression levels of such fusion proteins were not affected, these data suggest that the immune recognition of certain components was altered by the fusion. Testing different DNA vectors in mice and macaques revealed that a combination of DNAs producing different forms of the same antigen generated more balanced immune responses, a desirable feature for an optimal AIDS vaccine.


PLOS ONE | 2014

DNA and Protein Co-Immunization Improves the Magnitude and Longevity of Humoral Immune Responses in Macaques

Rashmi Jalah; Viraj Kulkarni; Vainav Patel; Margherita Rosati; Candido Alicea; Jenifer Bear; Lei Yu; Yongjun Guan; Xiaoying Shen; Georgia D. Tomaras; Celia C. LaBranche; David C. Montefiori; Rajasekhar Prattipati; Abraham Pinter; Julian W. Bess; Jeffrey D. Lifson; Steven G. Reed; Niranjan Y. Sardesai; David Venzon; Antonio Valentin; George N. Pavlakis; Barbara K. Felber

We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.


Vaccine | 2010

Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit.

Antonio Valentin; Agneta von Gegerfelt; Margherita Rosati; Georgios Miteloudis; Candido Alicea; Cristina Bergamaschi; Rashmi Jalah; Vainav Patel; Amir S. Khan; Ruxandra Draghia-Akli; George N. Pavlakis; Barbara K. Felber

We have previously reported that therapeutic immunization by intramuscular injection of optimized plasmid DNAs encoding SIV antigens effectively induces immune responses able to reduce viremia in antiretroviral therapy (ART)-treated SIVmac251-infected Indian rhesus macaques. We subjected such therapeutically immunized macaques to a second round of therapeutic vaccination using a combination of plasmids expressing SIV genes and the IL-15/IL-15 receptor alpha as molecular adjuvant, which were delivered by the more efficacious in vivo constant-current electroporation. A very strong induction of antigen-specific responses to Gag, Env, Nef, and Pol, during ART (1.2-1.6% of SIV-specific T cells in the circulating T lymphocytes) was obtained with the improved vaccination method. Immunological responses were characterized by the production of IFN-gamma, IL-2, and TNF-alpha either alone, or in combination as double or triple cytokine positive multifunctional T cells. A significant induction of CD4(+) T cell responses, mainly targeting Gag, Nef, and Pol, as well as of CD8(+) T cells, mainly targeting Env, was found in both T cells with central memory and effector memory markers. After release from ART, the animals showed a virological benefit with a further approximately 1 log reduction in viremia. Vaccination with plasmid DNAs has several advantages over other vaccine modalities, including the possibility for repeated administration, and was shown to induce potent, efficacious, and long-lasting recall immune responses. Therefore, these data support the concept of adding DNA vaccination to the HAART regimen to boost the HIV-specific immune responses.

Collaboration


Dive into the Vainav Patel's collaboration.

Top Co-Authors

Avatar

Barbara K. Felber

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Margherita Rosati

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Candido Alicea

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

George N. Pavlakis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Viraj Kulkarni

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Bergamaschi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rashmi Jalah

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge