Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vaiva Vezys is active.

Publication


Featured researches published by Vaiva Vezys.


Journal of Experimental Medicine | 2010

Dynamic T cell migration program provides resident memory within intestinal epithelium

David Masopust; Daniel Choo; Vaiva Vezys; E. John Wherry; Jaikumar Duraiswamy; Rama Akondy; Jun Wang; Kerry A. Casey; Daniel L. Barber; Kim S. Kawamura; Kathryn A. Fraser; Richard J. Webby; Volker Brinkmann; Eugene C. Butcher; Kenneth A. Newell; Rafi Ahmed

Migration to intestinal mucosa putatively depends on local activation because gastrointestinal lymphoid tissue induces expression of intestinal homing molecules, whereas skin-draining lymph nodes do not. This paradigm is difficult to reconcile with reports of intestinal T cell responses after alternative routes of immunization. We reconcile this discrepancy by demonstrating that activation within spleen results in intermediate induction of homing potential to the intestinal mucosa. We further demonstrate that memory T cells within small intestine epithelium do not routinely recirculate with memory T cells in other tissues, and we provide evidence that homing is similarly dynamic in humans after subcutaneous live yellow fever vaccine immunization. These data explain why systemic immunization routes induce local cell-mediated immunity within the intestine and indicate that this tissue must be seeded with memory T cell precursors shortly after activation.


Journal of Immunology | 2004

Activated Primary and Memory CD8 T Cells Migrate to Nonlymphoid Tissues Regardless of Site of Activation or Tissue of Origin

David Masopust; Vaiva Vezys; Edward J. Usherwood; Linda S. Cauley; Sara Olson; Amanda L. Marzo; Richard L. Ward; David L. Woodland; Leo Lefrançois

Following activation within secondary lymphoid tissue, CD8 T cells must migrate to targets, such as infected self tissue, allografts, and tumors, to mediate contact-dependent effector functions. To test whether the pattern of migration of activated CD8 T cells was dependent on the site of Ag encounter, we examined the distribution of mouse Ag-specific CD8 T cells following local challenges. Our findings indicated that activated CD8 T cells migrated pervasively to all nonlymphoid organs irrespective of the site of initial Ag engagement. Using an adoptive transfer system, migration of nonlymphoid memory cells was also examined. Although some limited preference for the tissue of origin was noted, transferred CD8 memory T cells from various nonlymphoid tissues migrated promiscuously, except to the intestinal mucosa, supporting the concept that distinct memory pools may exist. However, regardless of the tissue of origin, reactivation of transferred memory cells resulted in widespread dissemination of new effector cells. These data indicated that recently activated primary or memory CD8 T cells were transiently endowed with the ability to traffic to all nonlymphoid organs, while memory cell trafficking was more restricted. These observations will help refine our understanding of effector and memory CD8 T cell migration patterns.


Nature | 2016

Normalizing the environment recapitulates adult human immune traits in laboratory mice.

Lalit K. Beura; Sara E. Hamilton; Kevin Bi; Jason M. Schenkel; Oludare A. Odumade; Kerry A. Casey; Emily A. Thompson; Kathryn A. Fraser; Pamela C. Rosato; Ali Filali-Mouhim; Rafick Pierre Sekaly; Marc K. Jenkins; Vaiva Vezys; W. Nicholas Haining; Stephen C. Jameson; David Masopust

Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor ethically possible in humans. However, there is growing concern that laboratory mice do not reflect relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside. Laboratory mice live in abnormally hygienic specific pathogen free (SPF) barrier facilities. Here we show that standard laboratory mouse husbandry has profound effects on the immune system and that environmental changes produce mice with immune systems closer to those of adult humans. Laboratory mice—like newborn, but not adult, humans—lack effector-differentiated and mucosally distributed memory T cells. These cell populations were present in free-living barn populations of feral mice and pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting that the environment is involved in the induction of these cells. Altering the living conditions of mice profoundly affected the cellular composition of the innate and adaptive immune systems, resulted in global changes in blood cell gene expression to patterns that more closely reflected the immune signatures of adult humans rather than neonates, altered resistance to infection, and influenced T-cell differentiation in response to a de novo viral infection. These data highlight the effects of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modelling immunological events in free-living organisms, including humans.Our current understanding of immunology was largely defined in laboratory mice because of experimental advantages including inbred homogeneity, tools for genetic manipulation, the ability to perform kinetic tissue analyses starting with the onset of disease, and tractable models. Comparably reductionist experiments are neither technically nor ethically possible in humans. Despite revealing many fundamental principals of immunology, there is growing concern that mice fail to capture relevant aspects of the human immune system, which may account for failures to translate disease treatments from bench to bedside1–8. Laboratory mice live in abnormally hygienic “specific pathogen free” (SPF) barrier facilities. Here we show that the standard practice of laboratory mouse husbandry has profound effects on the immune system and that environmental changes result in better recapitulation of features of adult humans. Laboratory mice lack effector-differentiated and mucosally distributed memory T cells, which more closely resembles neonatal than adult humans. These cell populations were present in free-living barn populations of feral mice, pet store mice with diverse microbial experience, and were induced in laboratory mice after co-housing with pet store mice, suggesting a role for environment. Consequences of altering mouse housing profoundly impacted the cellular composition of the innate and adaptive immune system and resulted in global changes in blood cell gene expression patterns that more closely aligned with immune signatures of adult humans rather than neonates, altered the mouse’s resistance to infection, and impacted T cell differentiation to a de novo viral infection. These data highlight the impact of environment on the basal immune state and response to infection and suggest that restoring physiological microbial exposure in laboratory mice could provide a relevant tool for modeling immunological events in free-living organisms, including humans.


Journal of Immunology | 2006

Cutting Edge: Gut Microenvironment Promotes Differentiation of a Unique Memory CD8 T Cell Population

David Masopust; Vaiva Vezys; E. John Wherry; Daniel L. Barber; Rafi Ahmed

Whether tissue microenvironment influences memory CD8 T cell differentiation is unclear. We demonstrate that virus-specific intraepithelial lymphocytes in gut resemble neither central nor effector memory CD8 T cells isolated from spleen or blood. This unique phenotype arises in situ within the gut, suggesting that anatomic location plays an inductive role in the memory differentiation program. In support of this hypothesis, memory CD8 T cells changed phenotype upon change in location. After transfer and in vivo restimulation, gut or spleen memory cells proliferated, disseminated into spleen and gut, and adopted the memory T cell phenotype characteristic of their new environment. Our data suggests that anatomic location directly impacts the memory T cell differentiation program.


Journal of Immunology | 2012

Antigen-Independent Differentiation and Maintenance of Effector-like Resident Memory T Cells in Tissues

Kerry A. Casey; Kathryn A. Fraser; Jason M. Schenkel; Amy E. Moran; Michael C. Abt; Lalit K. Beura; Philip J. Lucas; David Artis; E. John Wherry; Kristin A. Hogquist; Vaiva Vezys; David Masopust

Differentiation and maintenance of recirculating effector memory CD8 T cells (TEM) depends on prolonged cognate Ag stimulation. Whether similar pathways of differentiation exist for recently identified tissue-resident effector memory T cells (TRM), which contribute to rapid local protection upon pathogen re-exposure, is unknown. Memory CD8αβ+ T cells within small intestine epithelium are well-characterized examples of TRM, and they maintain a long-lived effector-like phenotype that is highly suggestive of persistent Ag stimulation. This study sought to define the sources and requirements for prolonged Ag stimulation in programming this differentiation state, including local stimulation via cognate or cross-reactive Ags derived from pathogens, microbial flora, or dietary proteins. Contrary to expectations, we found that prolonged cognate Ag stimulation was dispensable for intestinal TRM ontogeny. In fact, chronic antigenic stimulation skewed differentiation away from the canonical intestinal T cell phenotype. Resident memory signatures, CD69 and CD103, were expressed in many nonlymphoid tissues including intestine, stomach, kidney, reproductive tract, pancreas, brain, heart, and salivary gland and could be driven by cytokines. Moreover, TGF-β–driven CD103 expression was required for TRM maintenance within intestinal epithelium in vivo. Thus, induction and maintenance of long-lived effector-like intestinal TRM differed from classic models of TEM ontogeny and were programmed through a novel location-dependent pathway that was required for the persistence of local immunological memory.


Nature Immunology | 2013

Sensing and alarm function of resident memory CD8 + T cells

Jason M. Schenkel; Kathryn A. Fraser; Vaiva Vezys; David Masopust

CD8+ T cells eliminate intracellular infections through two contact-dependent effector functions: cytolysis and secretion of antiviral cytokines. Here we identify the following additional function for memory CD8+ T cells that persist at front-line sites of microbial exposure: to serve as local sensors of previously encountered antigens that precipitate innate-like alarm signals and draw circulating memory CD8+ T cells into the tissue. When memory CD8+ T cells residing in the female mouse reproductive tract encountered cognate antigen, they expressed interferon-γ (IFN-γ), potentiated robust local expression of inflammatory chemokines and induced rapid recruitment of circulating memory CD8+ T cells. Anamnestic responses in front-line tissues are thus an integrated collaboration between front-line and circulating populations of memory CD8+ T cells, and vaccines should establish both populations to maximize rapid responses.


Science | 2014

Resident memory CD8 T cells trigger protective innate and adaptive immune responses

Jason M. Schenkel; Kathryn A. Fraser; Lalit K. Beura; Kristen E. Pauken; Vaiva Vezys; David Masopust

Resident memory T cells sound the alarm Immunological memory protects against reinfection. Resident memory T cells (TRM) are long-lived and remain in the tissues where they first encountered a pathogen (see the Perspective by Carbone and Gebhardt). Schenkel et al. and Ariotti et al. found that CD8+ TRM cells act like first responders in the female reproductive tissue or the skin of mice upon antigen reencounter. By secreting inflammatory proteins, TRM cells rapidly activated local immune cells to respond, so much so that they protected against infection with an unrelated pathogen. Iijima and Iwasaki found that CD4+ TRM cells protected mice against reinfection with intravaginal herpes simplex virus 2. Science, this issue p. 98, p. 101, p. 93; see also p. 40 Resident memory CD8+ T cells orchestrate a broad immune response in response to reinfection. [Also see Perspective by Carbone and Gebhardt] The pathogen recognition theory dictates that, upon viral infection, the innate immune system first detects microbial products and then responds by providing instructions to adaptive CD8 T cells. Here, we show in mice that tissue resident memory CD8 T cells (TRM cells), non-recirculating cells located at common sites of infection, can achieve near-sterilizing immunity against viral infections by reversing this flow of information. Upon antigen resensitization within the mouse female reproductive mucosae, CD8+ TRM cells secrete cytokines that trigger rapid adaptive and innate immune responses, including local humoral responses, maturation of local dendritic cells, and activation of natural killer cells. This provided near-sterilizing immunity against an antigenically unrelated viral infection. Thus, CD8+ TRM cells rapidly trigger an antiviral state by amplifying receptor-derived signals from previously encountered pathogens.


Nature Protocols | 2014

Intravascular staining for discrimination of vascular and tissue leukocytes

Kristin G. Anderson; Katrin D. Mayer-Barber; Heungsup Sung; Lalit K. Beura; Britnie R. James; Justin J. Taylor; Lindor Qunaj; Thomas S. Griffith; Vaiva Vezys; Daniel L. Barber; David Masopust

Characterization of the cellular participants in tissue immune responses is crucial to understanding infection, cancer, autoimmunity, allergy, graft rejection and other immunological processes. Previous reports indicate that leukocytes in lung vasculature fail to be completely removed by perfusion. Several studies suggest that intravascular staining may discriminate between tissue-localized and blood-borne cells in the mouse lung. Here we outline a protocol for the validation and use of intravascular staining to define innate and adaptive immune cells in mice. We demonstrate application of this protocol to leukocyte analyses in many tissues and we describe its use in the contexts of lymphocytic choriomeningitis virus and Mycobacterium tuberculosis infections or solid tumors. Intravascular staining and organ isolation usually takes 5–30 min per mouse, with additional time required for any subsequent leukocyte isolation, staining and analysis. In summary, this simple protocol should help enable interpretable analyses of tissue immune responses.


Journal of Experimental Medicine | 2006

Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection

Vaiva Vezys; David Masopust; Christopher C. Kemball; Daniel L. Barber; Leigh A. O'Mara; Christian P. Larsen; Thomas C. Pearson; Rafi Ahmed; Aron E. Lukacher

Numerous microbes establish persistent infections, accompanied by antigen-specific CD8 T cell activation. Pathogen-specific T cells in chronically infected hosts are often phenotypically and functionally variable, as well as distinct from T cells responding to nonpersistent infections; this phenotypic heterogeneity has been attributed to an ongoing reencounter with antigen. Paradoxically, maintenance of memory CD8 T cells to acutely resolved infections is antigen independent, whereas there is a dependence on antigen for T cell survival in chronically infected hosts. Using two chronic viral infections, we demonstrate that new naive antigen-specific CD8 T cells are primed after the acute phase of infection. These newly recruited T cells are phenotypically distinct from those primed earlier. Long-lived antiviral CD8 T cells are defective in self-renewal, and lack of thymic output results in the decline of virus-specific CD8 T cells, indicating that newly generated T cells preserve antiviral CD8 T cell populations during chronic infection. These findings reveal a novel role for antigen in maintaining virus-specific CD8 T cells during persistent infection and provide insight toward understanding T cell differentiation in chronic infection.


Nature | 2009

Memory CD8 T-cell compartment grows in size with immunological experience

Vaiva Vezys; Andrew Yates; Kerry A. Casey; Gibson Lanier; Rafi Ahmed; Rustom Antia; David Masopust

Memory CD8 T cells, generated by natural pathogen exposure or intentional vaccination, protect the host against specific viral infections. It has long been proposed that the number of memory CD8 T cells in the host is inflexible, and that individual cells are constantly competing for limited space. Consequently, vaccines that introduce over-abundant quantities of memory CD8 T cells specific for an agent of interest could have catastrophic consequences for the host by displacing memory CD8 T cells specific for all previous infections. To test this paradigm, we developed a vaccination regimen in mice that introduced as many new long-lived memory CD8 T cells specific for a single vaccine antigen as there were memory CD8 T cells in the host before vaccination. Here we show that, in contrast to expectations, the size of the memory CD8 T-cell compartment doubled to accommodate these new cells, a change due solely to the addition of effector memory CD8 T cells. This increase did not affect the number of CD4 T cells, B cells or naive CD8 T cells, and pre-existing memory CD8 T cells specific for a previously encountered infection were largely preserved. Thus, the number of effector memory CD8 T cells in the mammalian host adapts according to immunological experience. Developing vaccines that abundantly introduce new memory CD8 T cells should not necessarily ablate pre-existing immunity to other infections.

Collaboration


Dive into the Vaiva Vezys's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leo Lefrançois

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda L. Marzo

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Daniel L. Barber

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kristen E. Pauken

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge