Valentí Sallarès
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valentí Sallarès.
Journal of Geophysical Research | 2001
Valentí Sallarès; Juan José Dañobeitia; Ernst R. Flueh
We present the results of a multidisciplinary geophysical study, conducted to investigate the lithospheric structure of the Costa Rican Isthmus. The physical properties of the lithosphere are resolved by three-dimensional (3-D) simultaneous inversion of velocity anomalies and hypocenter parameters using local earthquakes and 2-D forward modeling of onshore and offshore seismic refraction and gravity data. According to our results, the northern half of the Costa Rican Isthmus is constituted by a ∼40-km-thick crust, with a 6- to 7-km-thick oceanic crust subducting under it. The uppermost level of the basement and most of the marginal wedge show intermediate velocities and high densities, in good agreement with those described for flood basalts. The midlevel shows velocities and densities representative of oceanic crust. The bottommost level (20-40 km) shows high velocities and densities, typical of mafic rocks, and the upper mantle displays anomalously low densities and velocities. Intracrustal heterogeneities at intermediate wavelengths are indicated by prominent velocity anomalies. These results are consistent with a basement beneath the Costa Rican Isthmus being part of the Caribbean plateau, originated at 85-90 Ma with the onset of the Galapagos hotspot. The upper level corresponds to the flood basalts extruded during this phase, and it includes most of the marginal wedge. The second level represents the preexisting oceanic crust. The mafic lower crust, intracrustal heterogeneities, and anomalous upper mantle are interpreted to be built up by underplating, intrusion, and crystallization of basaltic melts, formed under the influence of subducting lithosphere dehydration.
Tectonophysics | 1998
Ramón Carbonell; Valentí Sallarès; Jaume Pous; J.J. Dan˜obeitia; Pilar Queralt; Juanjo Ledo; V. García Duen˜as
Abstract The combined analysis of magnetotelluric measurements, tomographic velocity models and deep seismic reflection images confirms that the Betics orogen consists of the juxtaposition of two crustal domains characterized by distinctive physical properties. At depth these data sets show evidence for a non-coincidence of the petrological and the seismic Moho beneath the Betics chain. The data sets reveal the geophysical properties of the Alboran domain (Internal Betics) and the Iberian Massif (External Betics). According to this, the Iberian crust features a relatively high seismic velocity, is seismically transparent in the seismic reflection images and is electrically resistive. The Alboran domain crust is characterized by a low average velocity, displays high reflectivity in the seismic reflection images and is electrically conductive. The outcrops of the metamorphic complexes (Alpujarride and Nevado Filabride), showing relatively high velocities coupled with low V p /V s values (1.67) derived from the Wadati slopes, suggest the existence of rocks rich in silica beneath the Alboran domain crust. An interpreted detachment at 12 km depth imaged by deep seismic reflection suggests that these rocks could be related to the Iberian upper crust. Partial melts and fluids are proposed to explain the high conductivity observed at deep crustal levels. These would account also for the reflectivity and the low V p /V s ratios mapped beneath the Alboran domain.
Journal of Geophysical Research | 2014
S. Martínez-Loriente; Valentí Sallarès; Eulàlia Gràcia; Rafael Bartolomé; Juan José Dañobeitia; Nevio Zitellini
We present a new classification of geological domains at the Africa-Eurasia plate boundary off SW Iberia, together with a regional geodynamic reconstruction spanning from the Mesozoic extension to the Neogene-to-present-day convergence. It is based on seismic velocity and density models along a new transect running from the Horseshoe to the Seine abyssal plains, which is combined with previously available geophysical models from the region. The basement velocity structure at the Seine Abyssal Plain indicates the presence of a highly heterogeneous, thin oceanic crust with local high-velocity anomalies possibly representing zones related to the presence of ultramafic rocks. The integration of this model with previous ones reveals the presence of three oceanic domains offshore SW Iberia: (1) the Seine Abyssal Plain domain, generated during the first stages of slow seafloor spreading in the NE Central Atlantic (Early Jurassic); (2) the Gulf of Cadiz domain, made of oceanic crust generated in the Alpine-Tethys spreading system between Iberia and Africa, which was coeval with the formation of the Seine Abyssal Plain domain and lasted up to the North Atlantic continental breakup (Late Jurassic); and (3) the Gorringe Bank domain, made of exhumed mantle rocks, which formed during the first stages of North Atlantic opening. Our models suggest that the Seine Abyssal Plain and Gulf of Cadiz domains are separated by the Lineament South strike-slip fault, whereas the Gulf of Cadiz and Gorringe Bank domains appear to be limited by a deep thrust fault located at the center of the Horseshoe Abyssal Plain.
Journal of Geophysical Research | 2014
Manel Prada; Valentí Sallarès; César R. Ranero; M. G. Vendrell; Ingo Grevemeyer; Nevio Zitellini; R. de Franco
In this work we investigate the crustal and tectonic structures of the Central Tyrrhenian back-arc basin combining refraction and wide-angle reflection seismic (WAS), gravity, and multichannel seismic (MCS) reflection data, acquired during the MEDOC (MEDiterraneo OCcidental)-2010 survey along a transect crossing the entire basin from Sardinia to Campania at 40°N. The results presented include a ~450 km long 2-D P wave velocity model, obtained by the traveltime inversion of the WAS data, a coincident density model, and a MCS poststack time-migrated profile. We interpret three basement domains with different petrological affinity along the transect based on the comparison of velocity and velocity-derived density models with existing compilations for continental crust, oceanic crust, and exhumed mantle. The first domain includes the continental crust of Sardinia and the conjugate Campania margin. In the Sardinia margin, extension has thinned the crust from ~20 km under the coastline to ~13 km ~60 km seaward. Similarly, the Campania margin is also affected by strong extensional deformation. The second domain, under the Cornaglia Terrace and its conjugate Campania Terrace, appears to be oceanic in nature. However, it shows differences with respect to the reference Atlantic oceanic crust and agrees with that generated in back-arc oceanic settings. The velocities-depth relationships and lack of Moho reflections in seismic records of the third domain (i.e., the Magnaghi and Vavilov basins) support a basement fundamentally made of mantle rocks. The large seamounts of the third domain (e.g., Vavilov) are underlain by 10–20 km wide, relatively low-velocity anomalies interpreted as magmatic bodies locally intruding the mantle.
Tectonics | 2011
Kevin Manchuel; Marc Régnier; Nicole Béthoux; Yvonne Font; Valentí Sallarès; Jordi Diaz; Hugo Yepes
[1] The North Ecuadorian–South Colombian subduction zone was the site of the 1906 Mw 8.8 megathrust earthquake. This main shock was followed by three large events in 1942, 1958, and 1979 whose rupture zones were located within the 500 km long 1906 rupture area. Acombined onshore andoffshore temporary seismic network covering from thetrench to the Andes was deployed during 3 months in the area of large earthquakes, in order to obtain a detailed knowledge of the seismic background activity. Resulting earthquakes location and mechanisms bring new insights on interseismic active deformation distribution in the three main tectonic units of the margin, namely, the Interplate Seismogenic Zone, the fore‐arc region which is part of the North Andean Block and the downgoing oceanic Nazca plate. The interplate seismic activity presents along strike variations, suggesting that the seismicity and the associated stress buildup along the plate interface depend on the time elapsed since the last large earthquakes. According to our results, the updip and downdip limits of the seismogenic zone appear to be located at 12 and 30 km depth, respectively. Shallow to intermediate depth seismicity indicates a slab dip angle of ≈25°. North of the Carnegie Ridge, the Wadati‐Benioff plane is defined beneath the fore arc down to ≈100 km depth. Facing the ridge, the Wadati‐Benioff plane extends beneath the Andes, down to ≈140kmdepth.Thisobservationconflictswiththehypothesisofthepresenceofaflatslabat a depth of 100 km facing the ridge. In the overlying fore‐arc region, the crustal seismicity occurs down to 40 km depth and is mainly concentrated in a roughly NW‐SE 100 km wide stripe stretching from the coast, at about 1°N, to the Andes. The location of this active deformation stripe coincides with observed tectonic segmentation of the coastal domain as evidenced by the presence of an uplifting segment to the south and a subsiding segment to the north of the stripe. It also corresponds to a ≈30° change in the trend of the Andes, suggesting that the curvature of the volcanic arc might play an important role in the deformation of the fore‐arc region.
Acta Acustica United With Acustica | 2009
Jean Kormann; Pedro Cobo; Manuel Recuero; Berta Biescas; Valentí Sallarès
This work investigates the ability of modelling seismic oceanography experiments by using underwater acoustic propagation equations. Seismic oceanography tries to retrieve the fine structure of the ocean water masses by processing the acoustic waves reflected in the low-contrast interfaces of fronts, eddies, internal waves or thermohaline intrusions. Since the reflectivity of such interfaces is of order 10 ―3 ―10 ―4 , the absorption capability of the numerical boundaries becomes crucial. Complex Frequency Shifted offers a better alternative to classical Perfectly Matched Layer formulation, but has not yet been extended to acoustic equations. Here, first- and second-order Complex Frequency Shifted Perfectly Matched Layers equations are proposed which can provide reflection coefficients of order 10 ―5 . Therefore, a numerical Finite-Difference Time-Domain (FDTD) scheme combined with the proposed CFS-PML equations is able to model such experiments.
Geophysical Research Letters | 2016
Valentí Sallarès; J.F. Mojica; Berta Biescas; Dirk Klaeschen; Eulàlia Gràcia
Part of the kinetic energy that maintains ocean circulation cascades down to small scales until it is dissipated through mixing. While most steps of this downward energy cascade are well understood, an observational gap exists at horizontal scales of 103-101 m that prevents characterizing a key step in the chain: the transition from anisotropic internal wave motions to isotropic turbulence. Here we show that this observational gap can be covered using high-resolution multichannel seismic (HR-MCS) data. Spectral analysis of acoustic reflectors imaged in the Alboran Sea thermocline shows that this transition is likely caused by shear instabilities. In particular, we show that the averaged horizontal wavenumber spectra of the reflectors vertical displacements display three subranges that reproduce theoretical spectral slopes of internal waves [λx > 100 m], Kelvin-Helmholtz-type shear instabilities [100 m > λx > 33 m], and turbulence [λx < 33 m], indicating that the whole chain of events is occurring continuously and simultaneously in the surveyed area.
Journal of Geophysical Research | 2016
Jonas B. Ruh; Valentí Sallarès; César R. Ranero; Taras V. Gerya
Funding was received from the People Programme (Marie Curie Actions) of the European Unions Seventh Framework Programme FP7/2007-2013/ under REA grant agreement 604713 (ZIP “Zooming In between Plates”). V.S. and C.R.R. acknowledge financial support received through the HADES project (CTM2011- 30400-C01 and CTM2011-30400-C02), funded by Spanish MINECO.
Journal of Geophysical Research | 2014
Stefan Moeller; Ingo Grevemeyer; César R. Ranero; Christian Berndt; Dirk Klaeschen; Valentí Sallarès; Nevio Zitellini; Roberto de Franco
Extension of the continental lithosphere leads to the formation of rift basins or rifted continental margins if breakup occurs. Seismic investigations have repeatedly shown that conjugate margins have asymmetric tectonic structures and different amount of extension and crustal thinning. Here we compare two coincident wide-angle and multichannel seismic profiles across the northern Tyrrhenian rift system sampling crust that underwent different stages of extension from north to south and from the flanks to the basin center. Tomographic inversion reveals that the crust has thinned homogeneously from ~24 km to ~17 km between the Corsica Margin and the Latium Margin implying a β factor of ~1.3–1.5. On the transect 80 km to the south, the crust thinned from ~24 km beneath Sardinia to a maximum of ~11 km in the eastern region near the Campania Margin (β factor of ~2.2). The increased crustal thinning is accompanied by a zone of reduced velocities in the upper crust that expands progressively toward the southeast. We interpret that the velocity reduction is related to rock fracturing caused by a higher degree of brittle faulting, as observed on multichannel seismic images. Locally, basalt flows are imaged intruding sediment in this zone, and heat flow values locally exceed 100 mW/m2. Velocities within the entire crust range 4.0–6.7 km/s, which are typical for continental rocks and indicate that significant rift-related magmatic underplating may not be present. The characteristics of the pre-tectonic, syn-tectonic and post-tectonic sedimentary units allow us to infer the spatial and temporal evolution of active rifting. In the western part of the southern transect, thick postrift sediments were deposited in half grabens that are bounded by large fault blocks. Fault spacing and block size diminish to the east as crustal thinning increases. Recent tectonic activity is expressed by faults cutting the seafloor in the east, near the mainland of Italy. The two transects show the evolution from the less extended rift in the north with a fairly symmetric conjugate structure to the asymmetric margins farther south. This structural evolution is consistent with W-E rift propagation and southward increasing extension rates.
instrumentation and measurement technology conference | 2008
S. Shariat-Panahi; Antoni Mànuel; F. Alegría; X. Roset; A. Bermúdez; Valentí Sallarès
First part of this paper presents an ocean bottom seismometers (OBS) designed and constructed for mid-term deployments in order to study the earth dynamics and internal structure. Many marine research institutes have developed such equipment, however there is no standard method for their characterization and calibration. The second part discusses the characterization tests based on the international standards carried out to present the specifications of the equipment built. Calibration of the constructed OBS is carried out through an oceanographic cruise using a widely used reference OBS. Data quality of the instruments is evaluated by direct inspection of the corresponding seismic record sections.