Valentin B. Fainerman
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valentin B. Fainerman.
Advances in Colloid and Interface Science | 1994
R. Miller; Paul Joos; Valentin B. Fainerman
Abstract Dynamic surface and interfacial tensions are the most frequently measured non-equilibrium properties of adsorption layers at liquid interfaces. The review presents the theoretical basis of adsorption kinetics, taking into consideration different adsorption mechanisms, and specific experimental conditions, such as liquid flow and interfacial area changes. Analytical solutions, if available, approximations as well as numerical procedures for direct solution of the physical models are presented. Several experimental techniques are discussed frequently used in studies of the dynamic adsorption behaviour of surfactants and polymers at liquid interfaces: drop volume, maximum bubble pressure, and pendent drop technique, drop pressure tensiometry, pulsating bubble and elastic ring method. Experimental results, most of all obtained with different technique on one and the same surfactant system, are then discussed on the basis of current theories. Finally, the role of dynamic interfacial properties in several practical applications is discussed: foam and emulsion film formation and stabilisation, rising of bubbles and drops in a surfactant solution.
Advances in Colloid and Interface Science | 2009
Cs. Kotsmar; V. Pradines; V.S. Alahverdjieva; E.V. Aksenenko; Valentin B. Fainerman; V.I. Kovalchuk; J. Krägel; Martin E. Leser; Boris A. Noskov; R. Miller
Depending on the bulk composition, adsorption layers formed from mixed protein/surfactant solutions contain different amounts of protein. Clearly, increasing amounts of surfactant should decrease the amount of adsorbed proteins successively. However, due to the much larger adsorption energy, proteins are rather strongly bound to the interface and via competitive adsorption surfactants cannot easily displace proteins. A thermodynamic theory was developed recently which describes the composition of mixed protein/surfactant adsorption layers. This theory is based on models for the single compounds and allows a prognosis of the resulting mixed layers by using the characteristic parameters of the involved components. This thermodynamic theory serves also as the respective boundary condition for the dynamics of adsorption layers formed from mixed solutions and their dilational rheological behaviour. Based on experimental studies with milk proteins (beta-casein and beta-lactoglobulin) mixed with non-ionic (decyl and dodecyl dimethyl phosphine oxide) and ionic (sodium dodecyl sulphate and dodecyl trimethyl ammonium bromide) surfactants at the water/air and water/hexane interfaces, the potential of the theoretical tools is demonstrated. The displacement of pre-adsorbed proteins by subsequently added surfactant can be successfully studied by a special experimental technique based on a drop volume exchange. In this way the drop profile analysis can provide tensiometry and dilational rheology data (via drop oscillation experiments) for two adsorption routes--sequential adsorption of the single compounds in addition to the traditional simultaneous adsorption from a mixed solution. Complementary measurements of the surface shear rheology and the adsorption layer thickness via ellipsometry are added in order to support the proposed mechanisms drawn from tensiometry and dilational rheology, i.e. to show that the formation of mixed adsorption layer is based on a modification of the protein molecules via electrostatic (ionic) and/or hydrophobic interactions by the surfactant molecules and a competitive adsorption of the resulting complexes with the free, unbound surfactant. Under certain conditions, the properties of the sequentially formed layers differ from those formed simultaneously, which can be explained by the different locations of complex formation.
Colloid and Polymer Science | 1994
Valentin B. Fainerman; R. Miller; P. Joos
The principle of maximum pressure in a bubble for measurements of dynamic surface tension is realized in a fully automatically operating apparatus. The set-up yields data in the time interval from 1 ms up to several seconds and can be temperature controlled from 5° to 80°C. Experimental data obtained for different surfactants and gelatine in water and/or water/glycerine mixtures at different temperatures are discussed. A direct comparison with results from oscillating jet and inclined plate experiments shows excellent agreement.
Food Hydrocolloids | 1996
R. Wüstneck; J. Krägel; R. Miller; Valentin B. Fainerman; Peter J. Wilde; Dipak K. Sarker; David C. Clark
The adsorption kinetic behaviour of β-lactoglobulin and β-casein solutions studied by dynamic surface tension measurements was interpreted by diffusion-controlled models. Approximate solutions of the model led to diffusion coefficients for short and long adsorption times. The coefficients associated with the short time region were found to be unexpectedly high. From the long time approximation, the coefficients reflect a slower process in the adsorption layer which is possibly superimposed by rearrangement processes.
Advances in Colloid and Interface Science | 2000
D. Vollhardt; Valentin B. Fainerman
The review demonstrates the recent theoretical and experimental progress in the understanding of penetration systems at the air-water interface in which a dissolved amphiphile (surfactant, protein) penetrates into a Langmuir monolayer. The critical review of the existing theoretical models which describe the thermodynamics of the penetration are critically reviewed. Although a rigorous thermodynamic analysis of penetration systems is unavailable due to their complexity, some model assumptions, e.g. the invariability of the activity coefficient of the insoluble component of the monolayer during the penetration of the soluble component results in reasonable solutions. New theoretical models describing the equilibrium behaviour of the insoluble monolayers which undergo the 2D aggregation in the monolayer, and the equations of state and adsorption isotherms which assume the existence of multiple states (conformations) of a protein molecule within the monolayer and the non-ideality of the adsorbed monolayers are now available. The theories which describe the penetration of a soluble surfactant into the main phases of Langmuir monolayers were presented first for the case of the mixture of the molecules possessing equal partial molar surfaces (the mixture of homologues), with further extension of the models to include the interesting process of the protein penetration into the monolayer of 2D aggregating phospholipid. This extension was based on a concept which subdivides the protein molecules into independent fragments with areas equal to those of the phospholipid molecule. Various mechanisms for the effect of the soluble surfactant on the aggregation of the insoluble component were considered in the theoretical models: (i) no effect on the aggregate formation process; (ii) formation of mixed aggregates; and (iii) the influence on the aggregating process via the change of aggregation constant, but without any formation of mixed aggregates. Accordingly depending on the mechanism, different forms of the equations of state of the monolayer and of the adsorption isotherms of soluble surfactant are predicted. Based on the shape of the experimental pi-A isotherms, interesting conclusions can be drawn on the real mechanism. First experimental evidence has been provided that the penetration of different proteins and surfactants into a DPPC monolayer in a fluid-like state induces a first order main phase transition of pure DPPC. The phase transition is indicated by a break point in the pi(t) penetration kinetics curves and the domain formation by BAM. Mixed aggregates of protein with phospholipid are not formed. These results agree satisfactorily with the predictions of the theoretical models. New information on phase transition and phase properties of Langmuir monolayers penetrated by soluble amphiphiles are obtained by coupling of the pi(t) penetration kinetics curves with BAM and GIXD measurements. The GIXD results on the penetration of beta-lactoglobulin into DPPC monolayers have shown that protein penetration occurs without any specific interactions with the DPPC molecules and the condensed phase consists only of DPPC.
Advances in Colloid and Interface Science | 2010
D. Vollhardt; Valentin B. Fainerman
Recent work has provided experimental and theoretical evidence that a first order fluid/condensed (LE/LC) phase transition can occur in adsorbed monolayers of amphiphiles and surfactants which are dissolved in aqueous solution. Similar to Langmuir monolayers, also in the case of adsorbed monolayers, the existence of a G/LE phase transition, as assumed by several authors, is a matter of question. Representative studies, at first performed with a tailored amphiphile and later with numerous other amphiphiles, also with n-dodecanol, provide insight into the main characteristics of the adsorbed monolayer during the adsorption kinetics. The general conditions necessary for the formation of a two-phase coexistence in adsorbed monolayers can be optimally studied using dynamic surface pressure measurements, Brewster angle microscopy (BAM) and synchrotron X-ray diffraction at grazing incidence (GIXD). A characteristic break point in the time dependence of the adsorption kinetics curves indicates the phase transition which is largely affected by the concentration of the amphiphile in the aqueous solution and on the temperature. Formation and growth of condensed phase domains after the phase transition point are visualised by BAM. As demonstrated by a tailored amphiphile, various types of morphological textures of the condensed phase can occur in different temperature regions. Lattice structure and tilt angle of the alkyl chains in the condensed phase of the adsorbed monolayer are determined using GIXD. The main growth directions of the condensed phase textures are correlated with the two-dimensional lattice structure. The results, obtained for the characteristics of the condensed phase after a first order main transition, are supported by experimental bridging to the Langmuir monolayers. Phase transition of adsorbing trace impurities in model surfactants can strongly affect the characteristics of the main component. Dodecanol present as minor component in aqueous sodium dodecylsulfate solution dominate largely the fundamental features of the adsorbed monolayer of the mixed dodecanol/SDS solutions at adsorption equilibrium. A theoretical concept on the basis of the quasi-chemical model and assumption of the entropy non-ideality has been developed which can well describe the experimental results of the diffusion kinetics of surfactant adsorption from solutions. The model regards the phase behaviour of adsorbed monolayers on the basis of the experimental results explicitly supported by the first order fluid/condensed phase transition and theoretical models assuming bimodal distribution between large aggregates (domains) and monomers and/or very small aggregates. Another simple theoretical model for the description of the coadsorption of surfactant mixtures, based on the additivity of the contributions brought by the solution components into the surface pressure is shown to be in qualitative agreement with the experimental data of mixed dodecanol/SDS solutions. The theoretical results corroborate the fact that the formed condensed phase (large aggregates) in the mixed monolayer consists mainly of dodecanol.
Langmuir | 2010
Julia Maldonado-Valderrama; R. Miller; Valentin B. Fainerman; Peter J. Wilde; Victor J. Morris
Understanding the effects of digestion conditions on the structure of interfacial protein networks is important in order to rationally design food emulsions which can moderate lipid digestion. This study compares the effect of gastric conditions (pH, temperature, and ionic strength) on β-lactoglobulin films at different fluid interfaces: air-water, tetradecane-water, and olive oil-water. The experiments have been designed to simulate the passage into the stomach media. Hence, preformed interfacial protein (β-lactoglobulin) networks have been exposed to gastric conditions in order to establish generic aspects of the digestion process. The results show that the presence of an oil phase affects both the unfolding of the protein at the interface on adsorption and the subsequent interprotein associations responsible for network formation at the interface. Furthermore, the effects of the physiological conditions characteristic of the stomach also altered differently the preformed protein layer at different fluid interfaces. Initially, the effects of temperature, acid pH, and ionic strength on the dilatational modulus of β-lactoglobulin adsorbed layers at tetradecane-water and olive oil-water interfaces were studied in isolation. The presence of salt was found to have a major effect on the dilatational response at the oil-water interface in contrast to the observations at the air-water interface: it enhanced intermolecular association, hence increasing the packing at the interface causing it to become more elastic. Exposure to acid pH (2.5) also increased the elasticity of the interface, possibly due to the fact that strong electrostatic interactions acting at the interface compensated for the reduced level of intermolecular association. However, the increase in dilatational modulus at the oil-water interface was less noticeable upon exposure to combined changes in acid pH and ionic strength, as would occur in the stomach. This is consistent with previously reported observations at the air-water interface. The quantitative differences in the response of the protein networks to gastric media at different fluid interfaces are discussed in terms of the conformation of β-lactoglobulin within the networks formed at each interface based on detailed theoretical modeling of adsorption data.
Langmuir | 2011
V. Pradines; Valentin B. Fainerman; E. V. Aksenenko; J. Krägel; R. Wüstneck; R. Miller
Interfacial tension measurements have been performed at the water/hexane interface on mixtures of the bovine milk protein β-lactoglobulin and positively charged cationic surfactants (alkytrimethylammonium bromides). The addition of surfactants with different chain lengths leads to the formation of protein-surfactant complexes with different adsorption properties as compared to those of the single protein. In this study, the formation of complexes has been observed clearly for protein-long chain surfactant (TTAB and CTAB) mixtures, which has shown in addition to specific electrostatic interactions the relevance of hydrophobic interactions between surfactant molecules and the protein. The modeling of interfacial tension data by using a mixed adsorption model provides a quantitative understanding of the mixture behavior. Indeed, the value of the adsorption constant of the protein obtained in the presence of surfactants has strongly varied as compared to the single protein. Actually, this parameter which represents the affinity of the molecule for the interface is representative of the hydrophobic character of the compound and so of its surface activity. Even if a more hydrophobic and more surface active protein-surfactant complex has been formed, the replacement of this complex from the interface by surfactants close to their cmc was observed.
Colloids and Surfaces A: Physicochemical and Engineering Aspects | 1993
Valentin B. Fainerman; A. V. Makievski; R. Miller
Abstract A newly designed apparatus based on the principle of maximum bubble pressure can be used for measuring the dynamic surface tension in a time interval from 1 ms to 10 s. The surface tension values for pure liquids obtained at small lifetimes are influenced by hydrodynamic effects. These effects depend on the viscosity of the liquid and the diameter of the capillary and decrease with increasing lifetimes. A procedure for correction is proposed and compared with experimental data for water—glycerine mixtures at different compositions and temperatures. Measurements of sodium tetradecyl sulphate in highly viscous water—glycerine mixtures lead to unexpected adsorption behaviour.
Colloids and Surfaces B: Biointerfaces | 2001
N Wüstneck; R. Wüstneck; Valentin B. Fainerman; R. Miller; U Pison
The surface behaviour of spread dipalmitoyl phosphatidyl choline (DPPC), lung surfactant protein C (SP-C), and their mixtures were characterised using a captive bubble surfactometer. The surface tension was determined by using axisymmetric bubble shape analysis. Surface dilatational rheological behaviour was characterised by sinusoidal oscillation of the bubble volume and at frequencies 0.006-0.025 Hz. The pi/A isotherms of DPPC, SP-C, and their mixtures were described with a generalised equation of state. Monolayer cycling of mixed DPPC/SP-C layers yields isotherms with a plateau in the range of 50-53 mN/m. When the surface pressure becomes higher SP-C is squeezed out of the film, but it re-enters the film upon expansion. Surface dilatational elasticities of DPPC films had a maximum at about 30 mN/m. At higher surface pressures, the films became brittle and the elasticity decreased. A slightly pronounced maximum was found at a surface pressure exceeding 55 mN/m. The dilatational viscosity had two distinct maxima, corresponding with those in the elasticity curves, i.e. one before the minimum area demand, and one in the range of over-compression. This was explained by the formation of a second ordered complex structure in the range of film over-compression. SP-C films show continuously increasing dilatational elasticities and viscosities with a maximum at f approximately 0.02 Hz. Mixed monolayers, DPPC+2 mol% SP-C, had dilatational elasticities increasing with surface pressure. In contrast to DPPC alone, an elasticity maximum appeared in the range of the squeeze out plateau. The dilatational viscosity had two distinct maxima as observed for DPPC, whereas the maximum before the squeeze out plateau is very broad like that of SP-C. The viscosity decreased for frequencies higher 0.02 Hz favouring elastic properties of the film. Our data provide experimental evidence that SP-C mixed with DPPC yield higher elasticities and viscosities as compared with films formed by the single components. This behaviour is likely to support breathing cycles, especially for the turn from inspiration to expiration and vice versa.