Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentin Djonov is active.

Publication


Featured researches published by Valentin Djonov.


The FASEB Journal | 2003

Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth

Andreas H. Zisch; Matthias P. Lutolf; Martin Ehrbar; George Raeber; Simone C. Rizzi; Neil Davies; Hugo Schmökel; Deon Bezuidenhout; Valentin Djonov; Peter Zilla; Jeffrey A. Hubbell

Local, controlled induction of angiogenesis remains a challenge that limits tissue engineering approaches to replace or restore diseased tissues. We present a new class of bioactive synthetic hydrogel matrices based on poly(ethylene glycol) (PEG) and synthetic peptides that exploits the activity of vascular endothelial growth factor (VEGF) alongside the base matrix functionality for cellular ingrowth, that is, induction of cell adhesion by pendant RGD‐containing peptides and provision of cell‐mediated remodeling by cross‐linking matrix metalloproteinase substrate peptides. By using a Michael‐type addition reaction, we incorporated variants of VEGF121 and VEGF165 covalently within the matrix, available for cells as they invade and locally remodel the material. The functionality of the matrix‐conjugated VEGF was preserved and was critical for in vitro endothelial cell survival and migration within the matrix environment. Consistent with a scheme of locally restricted availability of VEGF, grafting of these VEGF‐modified hydrogel matrices atop the chick chorioallontoic membrane evoked strong new blood vessel formation precisely at the area of graft‐membrane contact. When implanted subcutaneously in rats, these VEGF‐containing matrices were completely remodeled into native, vascularized tissue. This type of synthetic, biointeractive matrix with integrated angiogenic growth factor activity, presented and released only upon local cellular demand, could become highly useful in a number of clinical healing applications of local therapeutic angiogenesis.


Development | 2003

Flow regulates arterial-venous differentiation in the chick embryo yolk sac

Ferdinand le Noble; Delphine Moyon; Luc Pardanaud; Li Yuan; Valentin Djonov; Robert Matthijsen; Christiane Bréant; Vincent Fleury; Anne Eichmann

Formation of the yolk sac vascular system and its connection to the embryonic circulation is crucial for embryo survival in both mammals and birds. Most mice with mutations in genes involved in vascular development die because of a failure to establish this circulatory loop. Surprisingly, formation of yolk sac arteries and veins has not been well described in the recent literature. Using time-lapse video-microscopy, we have studied arterial-venous differentiation in the yolk sac of chick embryos. Immediately after the onset of perfusion, the yolk sac exhibits a posterior arterial and an anterior venous pole, which are connected to each other by cis-cis endothelial interactions. To form the paired and interlaced arterial-venous pattern characteristic of mature yolk sac vessels, small caliber vessels of the arterial domain are selectively disconnected from the growing arterial tree and subsequently reconnected to the venous system, implying that endothelial plasticity is needed to fashion normal growth of veins. Arterial-venous differentiation and patterning are controlled by hemodynamic forces, as shown by flow manipulation and in situ hybridization with arterial markers ephrinB2 and neuropilin 1, which show that expression of both mRNAs is not genetically determined but plastic and regulated by flow. In vivo application of ephrinB2 or EphB4 in the developing yolk sac failed to produce any morphological effects. By contrast, ephrinB2 and EphB4 application in the allantois of older embryos resulted in the rapid formation of arterial-venous shunts. In conclusion, we show that flow shapes the global patterning of the arterial tree and regulates the activation of the arterial markers ephrinB2 and neuropilin 1.


The EMBO Journal | 2002

Conditional switching of VEGF provides new insights into adult neovascularization and pro‐angiogenic therapy

Yuval Dor; Valentin Djonov; Rinat Abramovitch; Ahuva Itin; Glenn I. Fishman; Peter Carmeliet; Gadi Goelman; Eli Keshet

To gain insight into neovascularization of adult organs and to uncover inherent obstacles in vascular endothelial growth factor (VEGF)‐based therapeutic angiogenesis, a transgenic system for conditional switching of VEGF expression was devised. The system allows for a reversible induction of VEGF specifically in the heart muscle or liver at any selected schedule, thereby circumventing embryonic lethality due to developmental misexpression of VEGF. Using this system, we demonstrate a progressive, unlimited ramification of the existing vasculature. In the absence of spatial cues, however, abnormal vascular trees were produced, a consequence of chaotic connections with the existing network and formation of irregularly shaped sac‐like vessels. VEGF also caused a massive and highly disruptive edema. Importantly, premature cessation of the VEGF stimulus led to regression of most acquired vessels, thus challenging the utility of therapeutic approaches relying on short stimulus duration. A critical transition point was defined beyond which remodeled new vessels persisted for months after withdrawing VEGF, conferring a long‐term improvement in organ perfusion. This novel genetic system thus highlights remaining problems in the implementation of pro‐angiogenic therapy.


Circulation Research | 2004

Cell-Demanded Liberation of VEGF121 From Fibrin Implants Induces Local and Controlled Blood Vessel Growth

Martin Ehrbar; Valentin Djonov; Christian Schnell; Stefan A. Tschanz; Georg Martiny-Baron; Ursula Schenk; Jeanette Marjorie Wood; Peter H. Burri; Jeffrey A. Hubbell; Andreas H. Zisch

Abstract— Although vascular endothelial growth factor (VEGF) has been described as a potent angiogenic stimulus, its application in therapy remains difficult: blood vessels formed by exposure to VEGF tend to be malformed and leaky. In nature, the principal form of VEGF possesses a binding site for ECM components that maintain it in the immobilized state until released by local cellular enzymatic activity. In this study, we present an engineered variant form of VEGF, &agr;2PI1–8- VEGF121, that mimics this concept of matrix-binding and cell-mediated release by local cell–associated enzymatic activity, working in the surgically-relevant biological matrix fibrin. We show that matrix-conjugated &agr;2 PI1–8- VEGF121 is protected from clearance, contrary to native VEGF121 mixed into fibrin, which was completely released as a passive diffusive burst. Grafting studies on the embryonic chicken chorioallantoic membrane (CAM) and in adult mice were performed to assess and compare the quantity and quality of neovasculature induced in response to fibrin implants formulated with matrix-bound &agr;2 PI1–8- VEGF121 or native diffusible VEGF121. Our CAM measurements demonstrated that cell-demanded release of &agr;2 PI1–8- VEGF121 increases the formation of new arterial and venous branches, whereas exposure to passively released wild-type VEGF121 primarily induced chaotic changes within the capillary plexus. Specifically, our analyses at several levels, from endothelial cell morphology and endothelial interactions with periendothelial cells, to vessel branching and network organization, revealed that &agr;2 PI1–8- VEGF121 induces vessel formation more potently than native VEGF121 and that those vessels possess more normal morphologies at the light microscopic and ultrastructural level. Permeability studies in mice validated that vessels induced by &agr;2 PI1–8- VEGF121 do not leak. In conclusion, cell-demanded release of engineered VEGF121 from fibrin implants may present a therapeutically safe and practical modality to induce local angiogenesis.


Cell and Tissue Research | 2003

Vascular remodeling by intussusceptive angiogenesis

Valentin Djonov; Oliver Baum; Peter H. Burri

Intussusception (growth within itself) is an alternative to the sprouting mode of angiogenesis. The protrusion of opposing microvascular walls into the capillary lumen creates a contact zone between endothelial cells. The endothelial bilayer is perforated, intercellular contacts are reorganized, and a transluminal pillar with an interstitial core is formed, which is soon invaded by myofibroblasts and pericytes leading to its rapid enlargement by the deposition of collagen fibrils. Intussusception has been implicated in three processes of vascular growth and remodeling. (1) Intussusceptive microvascular growth permits rapid expansion of the capillary plexus, furnishing a large endothelial surface for metabolic exchange. (2) Intussusceptive arborization causes changes in the size, position, and form of preferentially perfused capillary segments, creating a hierarchical tree. (3) Intussusceptive branching remodeling (IBR) leads to modification of the branching geometry of supplying vessels, optimizing pre- and postcapillary flow properties. IBR can also lead to the removal of branches by pruning in response to changes in metabolic needs. None of the three modes requires the immediate proliferation of endothelial cells but rather the rearrangement and plastic remodeling of existing ones. Intussusception appears to be triggered immediately after the formation of the primitive capillary plexus by vasculogenesis or sprouting. The advantage of this mechanism of growth over sprouting is that blood vessels are generated more rapidly in an energetically and metabolically more economic manner, as extensive cell proliferation, basement membrane degradation, and invasion of the surrounding tissue are not required; the capillaries thereby formed are less leaky. This process occurs without disrupting organ function. Improvements in our understanding of the process should enable the development of novel pro- and anti-angiogenic therapeutic treatments.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2001

Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo.

Domenico Ribatti; Beatrice Nico; Angelo Vacca; Luisa Roncali; Peter H. Burri; Valentin Djonov

The chick embryo chorioallantoic membrane (CAM) is an extraembryonic membrane that is commonly used in vivo to study both angiogenesis and anti‐angiogenesis. This review 1) summarizes the current knowledge about the structure of the CAMs capillary bed; 2) discusses the controversy about the existence of a single blood sinus or a capillary plexus underlying the chorionic epithelium; 3) describes a new model of the CAM vascular growth, namely the intussusceptive mode; 4) reports findings regarding the role played by endogenous fibroblast growth factor‐2 in CAM vascularization; and 5) addresses the use and limitations of the CAM as a model for studying angiogenesis and anti‐angiogenesis. Anat Rec 264:317–324, 2001.


Nature Biotechnology | 2010

Self-sufficient control of urate homeostasis in mice by a synthetic circuit

Christian Kemmer; Marc Gitzinger; Marie Daoud-El Baba; Valentin Djonov; Jörg Stelling; Martin Fussenegger

Synthetic biology has shown that the metabolic behavior of mammalian cells can be altered by genetic devices such as epigenetic and hysteretic switches, timers and oscillators, biocomputers, hormone systems and heterologous metabolic shunts. To explore the potential of such devices for therapeutic strategies, we designed a synthetic mammalian circuit to maintain uric acid homeostasis in the bloodstream, disturbance of which is associated with tumor lysis syndrome and gout. This synthetic device consists of a modified Deinococcus radiodurans-derived protein that senses uric acids levels and triggers dose-dependent derepression of a secretion-engineered Aspergillus flavus urate oxidase that eliminates uric acid. In urate oxidase–deficient mice, which develop acute hyperuricemia, the synthetic circuit decreased blood urate concentration to stable sub-pathologic levels in a dose-dependent manner and reduced uric acid crystal deposits in the kidney. Synthetic gene-network devices providing self-sufficient control of pathologic metabolites represent molecular prostheses, which may foster advances in future gene- and cell-based therapies.


Developmental Dynamics | 2002

Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism.

Valentin Djonov; Haymo Kurz; Peter H. Burri

The theory of bifurcating vascular systems predicts vessel diameters that are related to optimality criteria like minimization of pumping energy or of building material. However, mechanisms for producing the postulated optimality have not been described so far, and quantitative data on bifurcation diameters during development are scarce. We used an embryonic vascular bed that rapidly grows and adapts to changing hemodynamic conditions, the chicken chorioallantoic membrane (CAM), and correlated vascular cast and tissue section morphology with in vivo time‐lapse video monitoring. The bifurcation exponent Δ and associated parameters were quantitatively assessed in arterial and venous microvessels ranging in diameter from 30 to 100 μm. We observed emergence of optimality by means of intussusception, i.e., formation of transvascular tissue pillars. In addition to intussusceptive microvascular growth (IMG = expansion of capillary networks) and intussusceptive arborization (IAR = formation of feeding vessels from capillaries) the observed intussusception at bifurcations represents a third variant of nonsprouting angiogenesis. We call it intussusceptive branching remodeling (IBR). IBR occurred in vessels of considerable diameter by means of two alternative mechanisms: either through pillars arising close to a bifurcation, which increased in girth until they merged with the connective tissue in the bifurcation angle; or through pillars arising at some distance from the bifurcation point, which then expanded by formation of ingrowing tissue folds until they became connected to the tissue of the bifurcation angle. Morphologic evidence suggests that IBR is a wide‐spread phenomenon, taking place also in lung, intestinal, kidney, eye, etc., vasculature. Irrespective of the mode followed, IBR led to a branching pattern close to the predicted optimum, Δ = 3.0. Significant differences were observed between Δ at arterial bifurcations (2.70 to 2.90) and Δ at venous bifurcations (2.93 to 3.75). IBR, by means of eccentric pillar formation and fusion, was also involved in vascular pruning. Experimental changes in CAM hemodynamics (by locally increasing blood flow) induced onset of IBR within less than 1 hr. Our study provides morphologic and quantitative evidence that a similar cellular machinery is used for all three variants of vascular intussusception, IMG, IAR, and IBR. It thus provides a mechanism of efficiently generating complex blood transport systems from limited genetic information. Differential quantitative outcome of IBR in arteries and veins, and the experimental induction of IBR strongly suggest that hemodynamic factors can instruct embryonic vascular remodeling toward optimality.


Microscopy Research and Technique | 2001

Vascular remodelling during the normal and malignant life cycle of the mammary gland

Valentin Djonov; Anne-Catherine Andres; Andrew Ziemiecki

The mammary gland life cycle is exemplified by massive, physiologically dictated changes in cell number and composition, architecture, and functionality. These drastic upheavals, by necessity, also involve the mammary endothelium, which undergoes angiogenic expansion during pregnancy and lactation followed by ordered regression during involution. In this review, we summarise data obtained using the Mercox methyl methacrylate corrosion cast technique to analyse the mammary gland vasculature during normal development and carcinogenesis. Concomitant with epithelial cell expansion, the mammary vasculature grows during the first half of pregnancy by sprouting angiogenesis whereas the last half of pregnancy and lactation are characterised by the non‐proliferative intussusceptive angiogenesis. The vasculature of the lactating gland is composed of a well‐developed capillary meshwork enveloping the secretory alveoli with basket‐like honeycomb structures. During involution, regression of the vasculature is achieved by regional collapse of the honeycomb structures, capillary retraction, and endothelial attenuation. This process appears partly to involve apoptosis. However, an additional mechanism involving remodelling without cell death, which we have termed angiomeiosis, must exist to explain the morphological observations. Interestingly, in mammary tumours of neuT transgenic mice, both sprouting and intussusceptive angiogenesis was observed simultaneously in the same nodules, a finding with potential implications for cancer therapy. The underlying molecular mechanisms controlling angiogenic modulation in the mammary gland, particularly angiogenic regression and the endothelial:parenchymal interplay, are poorly understood. However, the data summarised in this review indicate that precisely these molecular mechanisms offer novel alternatives for specific and effective treatment of breast cancer. Microsc. Res. Tech. 52:182–189, 2001.


Angiogenesis | 2009

Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling

Andrew N. Makanya; Ruslan Hlushchuk; Valentin Djonov

New blood vessels arise initially as blood islands in the process known as vasculogenesis or as new capillary segments produced through angiogenesis. Angiogenesis itself encompasses two broad processes, namely sprouting (SA) and intussusceptive (IA) angiogenesis. Primordial capillary plexuses expand through both SA and IA, but subsequent growth and remodeling are achieved through IA. The latter process proceeds through transluminal tissue pillar formation and subsequent vascular splitting, and the direction taken by the pillars delineates IA into overt phases, namely: intussusceptive microvascular growth, intussusceptive arborization, and intussusceptive branching remodeling. Intussusceptive microvascular growth circumscribes the process of initiation of pillar formation and their subsequent expansion with the result that the capillary surface area is greatly enhanced. In contrast, intussusceptive arborization entails formation of serried pillars that remodel the disorganized vascular meshwork into the typical tree-like arrangement. Optimization of local vascular branching geometry occurs through intussusceptive branching remodeling so that the vasculature is remodeled to meet the local demand. In addition, IA is important in creation of the local organ-specific angioarchitecture. While hemodynamic forces have proven direct effects on IA, with increase in blood flow resulting in initiation of pillars, the preponderant mechanisms are unclear. Molecular control of IA has so far not been unequivocally elucidated but interplay among several factors is probably involved. Future investigations are strongly encouraged to focus on interactions among angiogenic growth factors, angiopoetins, and related receptors.

Collaboration


Dive into the Valentin Djonov's collaboration.

Researchain Logo
Decentralizing Knowledge