Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentin Gogonea is active.

Publication


Featured researches published by Valentin Gogonea.


Nature Medicine | 2014

An abundant dysfunctional apolipoprotein A1 in human atheroma

Ying Huang; Joseph A. DiDonato; Bruce S. Levison; Dave Schmitt; Lin Kai Li; Jennifer A. Buffa; Timothy Kim; Gary Gerstenecker; Xiaodong Gu; Chandra Sekhar Rao Kadiyala; Zeneng Wang; Miranda K. Culley; Jennie E. Hazen; Anthony J. DiDonato; Xiaoming Fu; Stela Z. Berisha; Daoquan Peng; Truc Nguyen; Shaohong Liang; Chia-Chi Chuang; Leslie Cho; Edward F. Plow; Paul L. Fox; Valentin Gogonea; W.H. Wilson Tang; John S. Parks; Edward A. Fisher; Jonathan D. Smith; Stanley L. Hazen

Recent studies have indicated that high-density lipoproteins (HDLs) and their major structural protein, apolipoprotein A1 (apoA1), recovered from human atheroma are dysfunctional and are extensively oxidized by myeloperoxidase (MPO). In vitro oxidation of either apoA1 or HDL particles by MPO impairs their cholesterol acceptor function. Here, using phage display affinity maturation, we developed a high-affinity monoclonal antibody that specifically recognizes both apoA1 and HDL that have been modified by the MPO-H2O2-Cl− system. An oxindolyl alanine (2-OH-Trp) moiety at Trp72 of apoA1 is the immunogenic epitope. Mutagenesis studies confirmed a critical role for apoA1 Trp72 in MPO-mediated inhibition of the ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol acceptor activity of apoA1 in vitro and in vivo. ApoA1 containing a 2-OH-Trp72 group (oxTrp72-apoA1) is in low abundance within the circulation but accounts for 20% of the apoA1 in atherosclerosis-laden arteries. OxTrp72-apoA1 recovered from human atheroma or plasma is lipid poor, virtually devoid of cholesterol acceptor activity and demonstrated both a potent proinflammatory activity on endothelial cells and an impaired HDL biogenesis activity in vivo. Elevated oxTrp72-apoA1 levels in subjects presenting to a cardiology clinic (n = 627) were associated with increased cardiovascular disease risk. Circulating oxTrp72-apoA1 levels may serve as a way to monitor a proatherogenic process in the artery wall.


Nature Structural & Molecular Biology | 2007

The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction

Zhiping Wu; Matthew A. Wagner; Lemin Zheng; John S. Parks; Jacinto M. Shy; Jonathan D. Smith; Valentin Gogonea; Stanley L. Hazen

The cardioprotective function of high-density lipoprotein (HDL) is largely attributed to its ability to facilitate transport of cholesterol from peripheral tissues to the liver. However, HDL may become dysfunctional through oxidative modification, impairing cellular cholesterol efflux. Here we report a refined molecular model of nascent discoidal HDL, determined using hydrogen-deuterium exchange mass spectrometry. The model reveals two apolipoprotein A1 (apoA1) molecules arranged in an antiparallel double-belt structure, with residues 159–180 of each apoA1 forming a protruding solvent-exposed loop. We further show that this loop, including Tyr166, a preferred target for site-specific oxidative modification within atheroma, directly interacts with and activates lecithin cholesterol acyl transferase. These studies identify previously uncharacterized structural features of apoA1 in discoidal HDL that are crucial for particle maturation, and elucidate a structural and molecular mechanism for generating a dysfunctional form of HDL in atherosclerosis.


Journal of Clinical Investigation | 2013

Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex

Ying Huang; Zhiping Wu; Meliana Riwanto; Shengqiang Gao; Bruce S. Levison; Xiaodong Gu; Xiaoming Fu; Matthew A. Wagner; Christian Besler; Gary Gerstenecker; Renliang Zhang; Xin Min Li; Anthony J. DiDonato; Valentin Gogonea; W.H. Wilson Tang; Jonathan D. Smith; Edward F. Plow; Paul L. Fox; Diana M. Shih; Aldons J. Lusis; Edward A. Fisher; Joseph A. DiDonato; Ulf Landmesser; Stanley L. Hazen

Myeloperoxidase (MPO) and paraoxonase 1 (PON1) are high-density lipoprotein-associated (HDL-associated) proteins mechanistically linked to inflammation, oxidant stress, and atherosclerosis. MPO is a source of ROS during inflammation and can oxidize apolipoprotein A1 (APOA1) of HDL, impairing its atheroprotective functions. In contrast, PON1 fosters systemic antioxidant effects and promotes some of the atheroprotective properties attributed to HDL. Here, we demonstrate that MPO, PON1, and HDL bind to one another, forming a ternary complex, wherein PON1 partially inhibits MPO activity, while MPO inactivates PON1. MPO oxidizes PON1 on tyrosine 71 (Tyr71), a modified residue found in human atheroma that is critical for HDL binding and PON1 function. Acute inflammation model studies with transgenic and knockout mice for either PON1 or MPO confirmed that MPO and PON1 reciprocally modulate each others function in vivo. Further structure and function studies identified critical contact sites between APOA1 within HDL, PON1, and MPO, and proteomics studies of HDL recovered from acute coronary syndrome (ACS) subjects revealed enhanced chlorotyrosine content, site-specific PON1 methionine oxidation, and reduced PON1 activity. HDL thus serves as a scaffold upon which MPO and PON1 interact during inflammation, whereupon PON1 binding partially inhibits MPO activity, and MPO promotes site-specific oxidative modification and impairment of PON1 and APOA1 function.


Journal of Biological Chemistry | 2009

Double Superhelix Model of High Density Lipoprotein

Zhiping Wu; Valentin Gogonea; Xavier Lee; Matthew A. Wagner; Xinmin Li; Ying Huang; Arundhati Undurti; Roland P. May; Michael Haertlein; Martine Moulin; Irina Gutsche; Giuseppe Zaccai; Joseph A. DiDonato; Stanley L. Hazen

High density lipoprotein (HDL), the carrier of so-called “good” cholesterol, serves as the major athero-protective lipoprotein and has emerged as a key therapeutic target for cardiovascular disease. We applied small angle neutron scattering (SANS) with contrast variation and selective isotopic deuteration to the study of nascent HDL to obtain the low resolution structure in solution of the overall time-averaged conformation of apolipoprotein AI (apoA-I) versus the lipid (acyl chain) core of the particle. Remarkably, apoA-I is observed to possess an open helical shape that wraps around a central ellipsoidal lipid phase. Using the low resolution SANS shapes of the protein and lipid core as scaffolding, an all-atom computational model for the protein and lipid components of nascent HDL was developed by integrating complementary structural data from hydrogen/deuterium exchange mass spectrometry and previously published constraints from multiple biophysical techniques. Both SANS data and the new computational model, the double superhelix model, suggest an unexpected structural arrangement of protein and lipids of nascent HDL, an anti-parallel double superhelix wrapped around an ellipsoidal lipid phase. The protein and lipid organization in nascent HDL envisages a potential generalized mechanism for lipoprotein biogenesis and remodeling, biological processes critical to sterol and lipid transport, organismal energy metabolism, and innate immunity.


European Heart Journal | 2017

Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors

Xinmin S. Li; Slayman Obeid; Roland Klingenberg; Baris Gencer; François Mach; Lorenz Räber; Stephan Windecker; Nicolas Rodondi; David Nanchen; Olivier Muller; Melroy X. Miranda; Christian M. Matter; Lin Li; Zeneng Wang; Hassan S. Alamri; Valentin Gogonea; Yoon Mi Chung; W.H. Wilson Tang; Stanley L. Hazen; Thomas F. Lüscher

Aims Systemic levels of trimethylamine N-oxide (TMAO), a pro-atherogenic and pro-thrombotic metabolite produced from gut microbiota metabolism of dietary trimethylamine (TMA)-containing nutrients such as choline or carnitine, predict incident cardiovascular event risks in stable primary and secondary prevention subjects. However, the prognostic value of TMAO in the setting of acute coronary syndromes (ACS) remains unknown. Methods and results We investigated the relationship of TMAO levels with incident cardiovascular risks among sequential patients presenting with ACS in two independent cohorts. In the Cleveland Cohort, comprised of sequential subjects (n = 530) presenting to the Emergency Department (ED) with chest pain of suspected cardiac origin, an elevated plasma TMAO level at presentation was independently associated with risk of major adverse cardiac events (MACE, including myocardial infarction, stroke, need for revascularization, or death) over the ensuing 30-day (4th quartile (Q4) adjusted odds ratio (OR) 6.30, 95% confidence interval (CI), 1.89-21.0, P < 0.01) and 6-month (Q4 adjusted OR 5.65, 95%CI, 1.91-16.7; P < 0.01) intervals. TMAO levels were also a significant predictor of the long term (7-year) mortality (Q4 adjusted HR 1.81, 95%CI, 1.04-3.15; P < 0.05). Interestingly, TMAO level at initial presentation predicted risk of incident MACE over the near-term (30 days and 6 months) even among subjects who were initially negative for troponin T (< 0.1 ng/mL) (30 days, Q4 adjusted OR 5.83, 95%CI, 1.79-19.03; P < 0.01). The prognostic value of TMAO was also assessed in an independent multicentre Swiss Cohort of ACS patients (n = 1683) who underwent coronary angiography. Trimethylamine N-oxide again predicted enhanced MACE risk (1-year) (adjusted Q4 hazard ratios: 1.57, 95% CI, 1.03-2.41; P <0.05). Conclusion Plasma TMAO levels among patients presenting with chest pain predict both near- and long-term risks of incident cardiovascular events, and may thus provide clinical utility in risk stratification among subjects presenting with suspected ACS.


Circulation | 2013

Function and Distribution of Apolipoprotein A1 in the Artery Wall Are Markedly Distinct From Those in Plasma

Joseph A. DiDonato; Ying Huang; Kulwant S. Aulak; Orli Even-Or; Gary Gerstenecker; Valentin Gogonea; Paul L. Fox; W.H. Wilson Tang; Edward F. Plow; Jonathan D. Smith; Edward A. Fisher; Stanley L. Hazen

Background— Prior studies show that apolipoprotein A1 (apoA1) recovered from human atherosclerotic lesions is highly oxidized. Ex vivo oxidation of apoA1 or high-density lipoprotein (HDL) cross-links apoA1 and impairs lipid binding, cholesterol efflux, and lecithin-cholesterol acyltransferase activities of the lipoprotein. Remarkably, no studies to date directly quantify either the function or HDL particle distribution of apoA1 recovered from the human artery wall. Methods and Results— A monoclonal antibody (10G1.5) was developed that equally recognizes lipid-free and HDL-associated apoA1 in both native and oxidized forms. Examination of homogenates of atherosclerotic plaque–laden aorta showed >100-fold enrichment of apoA1 compared with normal aorta (P<0.001). Surprisingly, buoyant density fractionation revealed that only a minority (<3% of total) of apoA1 recovered from either lesions or normal aorta resides within an HDL-like particle (1.063⩽d⩽1.21). In contrast, the majority (>90%) of apoA1 within aortic tissue (normal and lesions) was recovered within the lipoprotein-depleted fraction (d>1.21). Moreover, both lesion and normal artery wall apoA1 are highly cross-linked (50% to 70% of total), and functional characterization of apoA1 quantitatively recovered from aorta with the use of monoclonal antibody 10G1.5 showed ≈80% lower cholesterol efflux activity and ≈90% lower lecithin-cholesterol acyltransferase activity relative to circulating apoA1. Conclusions— The function and distribution of apoA1 in human aorta are quite distinct from those found in plasma. The lipoprotein is markedly enriched within atherosclerotic plaque, predominantly lipid-poor, not associated with HDL, extensively oxidatively cross-linked, and functionally impaired.


Journal of Biological Chemistry | 2014

Site-specific Nitration of Apolipoprotein A-I at Tyrosine 166 Is Both Abundant within Human Atherosclerotic Plaque and Dysfunctional

Joseph A. DiDonato; Kulwant S. Aulak; Ying Huang; Matthew A. Wagner; Gary Gerstenecker; Celalettin Topbas; Valentin Gogonea; Anthony J. DiDonato; W.H. Wilson Tang; Ryan A. Mehl; Paul L. Fox; Edward F. Plow; Jonathan D. Smith; Edward A. Fisher; Stanley L. Hazen

Background: The functional importance of apolipoprotein A-I (apoA-I) nitration at tyrosine 166 (Tyr166) in vivo is controversial. Results: Nitrotyrosine 166-apoA-I accounts for 8% of apoA-I within human atheroma, is not HDL-associated, and is functionally impaired. Conclusion: Buoyant density ultracentrifugation of HDL can lead to erroneous results, particularly with modified apoA-I forms. Significance: Detection and quantification of nitrotyrosine 166-apoA-I may provide insights into a pathophysiological process within the artery wall. We reported previously that apolipoprotein A-I (apoA-I) is oxidatively modified in the artery wall at tyrosine 166 (Tyr166), serving as a preferred site for post-translational modification through nitration. Recent studies, however, question the extent and functional importance of apoA-I Tyr166 nitration based upon studies of HDL-like particles recovered from atherosclerotic lesions. We developed a monoclonal antibody (mAb 4G11.2) that recognizes, in both free and HDL-bound forms, apoA-I harboring a 3-nitrotyrosine at position 166 apoA-I (NO2-Tyr166-apoA-I) to investigate the presence, distribution, and function of this modified apoA-I form in atherosclerotic and normal artery wall. We also developed recombinant apoA-I with site-specific 3-nitrotyrosine incorporation only at position 166 using an evolved orthogonal nitro-Tyr-aminoacyl-tRNA synthetase/tRNACUA pair for functional studies. Studies with mAb 4G11.2 showed that NO2-Tyr166-apoA-I was easily detected in atherosclerotic human coronary arteries and accounted for ∼8% of total apoA-I within the artery wall but was nearly undetectable (>100-fold less) in normal coronary arteries. Buoyant density ultracentrifugation analyses showed that NO2-Tyr166-apoA-I existed as a lipid-poor lipoprotein with <3% recovered within the HDL-like fraction (d = 1.063–1.21). NO2-Tyr166-apoA-I in plasma showed a similar distribution. Recovery of NO2-Tyr166-apoA-I using immobilized mAb 4G11.2 showed an apoA-I form with 88.1 ± 8.5% reduction in lecithin-cholesterol acyltransferase activity, a finding corroborated using a recombinant apoA-I specifically designed to include the unnatural amino acid exclusively at position 166. Thus, site-specific nitration of apoA-I at Tyr166 is an abundant modification within the artery wall that results in selective functional impairments. Plasma levels of this modified apoA-I form may provide insights into a pathophysiological process within the diseased artery wall.


Journal of Chemical Physics | 2005

A Regularized and Renormalized Electrostatic Coupling Hamiltonian for hybrid Quantum-Mechanical–Molecular-Mechanical Calculations

Pradip K. Biswas; Valentin Gogonea

We describe a regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical (QM)-molecular-mechanical (MM) calculations. To remedy the nonphysical QM/MM Coulomb interaction at short distances arising from a point electrostatic potential (ESP) charge of the MM atom and also to accommodate the effect of polarized MM atom in the coupling Hamiltonian, we propose a partial-wave expansion of the ESP charge and describe the effect of a s-wave expansion, extended over the covalent radius r(c), of the MM atom. The resulting potential describes that, at short distances, large scale cancellation of Coulomb interaction arises intrinsically from the localized expansion of the MM point charge and the potential self-consistently reduces to 1r(c) at zero distance providing a renormalization to the Coulomb energy near interatomic separations. Employing this renormalized Hamiltonian, we developed an interface between the Car-Parrinello molecular-dynamics program and the classical molecular-dynamics simulation program Groningen machine for chemical simulations. With this hybrid code we performed QM/MM calculations on water dimer, imidazole carbon monoxide (CO) complex, and imidazole-heme-CO complex with CO interacting with another imidazole. The QM/MM results are in excellent agreement with experimental data for the geometry of these complexes and other computational data found in literature.


Journal of Biological Chemistry | 2011

The low resolution structure of ApoA1 in spherical high density lipoprotein revealed by small angle neutron scattering

Zhiping Wu; Valentin Gogonea; Xavier Lee; Roland P. May; Vitaliy Pipich; Matthew A. Wagner; Arundhati Undurti; Thomas C. Tallant; Camelia Baleanu-Gogonea; Francesca Charlton; Alexander Ioffe; Joseph A. DiDonato; Kerry-Anne Rye; Stanley L. Hazen

Spherical high density lipoprotein (sHDL), a key player in reverse cholesterol transport and the most abundant form of HDL, is associated with cardiovascular diseases. Small angle neutron scattering with contrast variation was used to determine the solution structure of protein and lipid components of reconstituted sHDL. Apolipoprotein A1, the major protein of sHDL, forms a hollow structure that cradles a central compact lipid core. Three apoA1 chains are arranged within the low resolution structure of the protein component as one of three possible global architectures: (i) a helical dimer with a hairpin (HdHp), (ii) three hairpins (3Hp), or (iii) an integrated trimer (iT) in which the three apoA1 monomers mutually associate over a portion of the sHDL surface. Cross-linking and mass spectrometry analyses help to discriminate among the three molecular models and are most consistent with the HdHp overall architecture of apoA1 within sHDL.


Biochemistry | 2010

Congruency between biophysical data from multiple platforms and molecular dynamics simulation of the double-super helix model of nascent high-density lipoprotein

Valentin Gogonea; Zhiping Wu; Xavier Lee; Vitaliy Pipich; Xin Min Li; Alexander Ioffe; Joseph A. DiDonato; Stanley L. Hazen

The predicted structure and molecular trajectories from >80 ns molecular dynamics simulation of the solvated Double-Super Helix (DSH) model of nascent high-density lipoprotein (HDL) were determined and compared with experimental data on reconstituted nascent HDL obtained from multiple biophysical platforms, including small angle neutron scattering (SANS) with contrast variation, hydrogen-deuterium exchange tandem mass spectrometry (H/D-MS/MS), nuclear magnetic resonance spectroscopy (NMR), cross-linking tandem mass spectrometry (MS/MS), fluorescence resonance energy transfer (FRET), electron spin resonance spectroscopy (ESR), and electron microscopy. In general, biophysical constraints experimentally derived from the multiple platforms agree with the same quantities evaluated using the simulation trajectory. Notably, key structural features postulated for the recent DSH model of nascent HDL are retained during the simulation, including (1) the superhelical conformation of the antiparallel apolipoprotein A1 (apoA1) chains, (2) the lipid micellar-pseudolamellar organization, and (3) the solvent-exposed Solar Flare loops, proposed sites of interaction with LCAT (lecithin cholesteryl acyltransferase). Analysis of salt bridge persistence during simulation provides insights into structural features of apoA1 that forms the backbone of the lipoprotein. The combination of molecular dynamics simulation and experimental data from a broad range of biophysical platforms serves as a powerful approach to studying large macromolecular assemblies such as lipoproteins. This application to nascent HDL validates the DSH model proposed earlier and suggests new structural details of nascent HDL.

Collaboration


Dive into the Valentin Gogonea's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Gerstenecker

Cleveland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge