Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentin Starovoytov is active.

Publication


Featured researches published by Valentin Starovoytov.


Advanced Materials | 2012

Generation of a Library of Non‐Toxic Quantum Dots for Cellular Imaging and siRNA Delivery

Prasad Subramaniam; Seung Jae Lee; Shreyas Shah; Sahishnu Patel; Valentin Starovoytov; Ki-Bum Lee

The development of non-toxic quantum dots and further investigation of their composition-dependent cytotoxicity in a high-throughput manner have been critical challenges for biomedical imaging and gene delivery. Herein, we report a rapid sonochemical synthetic methodology for generating a library of highly biocompatible ZnS-AgInS(2) (ZAIS) quantum dots for cellular imaging and siRNA delivery.


Nanotechnology | 2009

Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks

Wojtek Tutak; Ki Ho Park; Anatoly Vasilov; Valentin Starovoytov; Giovanni Fanchini; Nicola C. Partridge; Federico Sesti; Manish Chhowalla

A central effort in biomedical research concerns the development of materials for sustaining and controlling cell growth. Carbon nanotube based substrates have been shown to support the growth of different kinds of cells (Hu et al 2004 Nano Lett. 4 507-11; Kalbacova et al 2006 Phys. Status Solidi b 13 243; Zanello et al 2006 Nano Lett. 6 562-7); however the underlying molecular mechanisms remain poorly defined. To address the fundamental question of mechanisms by which nanotubes promote bone mitosis and histogenesis, primary calvariae osteoblastic cells were grown on single-walled carbon nanotube thin film (SWNT) substrates. Using a combination of biochemical and optical techniques we demonstrate here that SWNT networks promote cell development through two distinct steps. Initially, SWNTs are absorbed in a process that resembles endocytosis, inducing acute toxicity. Nanotube-mediated cell destruction, however, induces a release of endogenous factors that act to boost the activity of the surviving cells by stimulating the synthesis of extracellular matrix.


Human Molecular Genetics | 2015

Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains

Xuan Ye; Xiaqin Sun; Valentin Starovoytov; Qian Cai

Accumulation of dysfunctional mitochondria is one of the hallmarks in Alzheimers disease (AD). Mitophagy, a selective autophagy for eliminating damaged mitochondria, constitutes a key cellular pathway in mitochondrial quality control. Recent studies established that acute depolarization of mitochondrial membrane potential (Δψm) using Δψm dissipation reagents in vitro induces Parkin-mediated mitophagy in many non-neuronal cell types or neuronal cell lines. However, neuronal pathways inducing mitophagy, particularly under pathophysiological relevant context in AD mouse models and patient brains, are largely unknown. Here, we reveal, for the first time, that Parkin-mediated mitophagy is robustly induced in mutant hAPP neurons and AD patient brains. In the absence of Δψm dissipation reagents, hAPP neurons exhibit increased recruitment of cytosolic Parkin to depolarized mitochondria. Under AD-linked pathophysiological conditions, Parkin translocation predominantly occurs in the somatodendritic regions; such distribution is associated with reduced anterograde and increased retrograde transport of axonal mitochondria. Enhanced mitophagy was further confirmed in AD patient brains, accompanied with depletion of cytosolic Parkin over disease progression. Thus, aberrant accumulation of dysfunctional mitochondria in AD-affected neurons is likely attributable to inadequate mitophagy capacity in eliminating increased numbers of damaged mitochondria. Altogether, our study provides the first line of evidence that AD-linked chronic mitochondrial stress under in vitro and in vivo pathophysiological conditions effectively triggers Parkin-dependent mitophagy, thus establishing a foundation for further investigations into cellular pathways in regulating mitophagy to ameliorate mitochondrial pathology in AD.


The Journal of Neuroscience | 2011

PSD-95 Alters Microtubule Dynamics via an Association With EB3

Eric S. Sweet; Michelle L. Previtera; José R. Fernández; Erik I. Charych; Chia-Yi Tseng; Munjin Kwon; Valentin Starovoytov; James Q. Zheng; Bonnie L. Firestein

Little is known about how the neuronal cytoskeleton is regulated when a dendrite decides whether to branch or not. Previously, we reported that postsynaptic density protein 95 (PSD-95) acts as a stop signal for dendrite branching. It is yet to be elucidated how PSD-95 affects the cytoskeleton and how this regulation relates to the dendritic arbor. Here, we show that the SH3 (src homology 3) domain of PSD-95 interacts with a proline-rich region within the microtubule end-binding protein EB3. Overexpression of PSD-95 or mutant EB3 results in a decreased lifetime of EB3 comets in dendrites. In line with these data, transfected rat neurons show that overexpression of PSD-95 results in less organized microtubules at dendritic branch points and decreased dendritogensis. The interaction between PSD-95 and EB3 elucidates a function for a novel region of EB3 and provides a new and important mechanism for the regulation of microtubules in determining dendritic morphology.


Standards in Genomic Sciences | 2012

Complete genome sequence of Terriglobus saanensis type strain SP1PR4T, an Acidobacteria from tundra soil

Suman R. Rawat; Minna K. Männistö; Valentin Starovoytov; Lynne Goodwin; Matt Nolan; Lauren Hauser; Miriam Land; Karen W. Davenport; Tanja Woyke; Max M. Häggblom

Terriglobus saanensis SP1PR4T is a novel species of the genus Terriglobus. T. saanensis is of ecological interest because it is a representative of the phylum Acidobacteria, which are dominant members of bacterial soil microbiota in Arctic ecosystems. T. saanensis is a cold-adapted acidophile and a versatile heterotroph utilizing a suite of simple sugars and complex polysaccharides. The genome contained an abundance of genes assigned to metabolism and transport of carbohydrates including gene modules encoding for carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides. T. saanensis SP1PR4T represents the first member of genus Terriglobus with a completed genome sequence, consisting of a single replicon of 5,095,226 base pairs (bp), 54 RNA genes and 4,279 protein-coding genes. We infer that the physiology and metabolic potential of T. saanensis is adapted to allow for resilience to the nutrient-deficient conditions and fluctuating temperatures of Arctic tundra soils.


The Journal of Neuroscience | 2015

Progressive Hearing Loss in Mice Carrying a Mutation in Usp53

Marcin Kazmierczak; Suzan L. Harris; Piotr Kazmierczak; Prahar Shah; Valentin Starovoytov; Kevin K. Ohlemiller; Martin Schwander

Disordered protein ubiquitination has been linked to neurodegenerative disease, yet its role in inner ear homeostasis and hearing loss is essentially unknown. Here we show that progressive hearing loss in the ethylnitrosourea-generated mambo mouse line is caused by a mutation in Usp53, a member of the deubiquitinating enzyme family. USP53 contains a catalytically inactive ubiquitin-specific protease domain and is expressed in cochlear hair cells and a subset of supporting cells. Although hair cell differentiation is unaffected in mambo mice, outer hair cells degenerate rapidly after the first postnatal week. USP53 colocalizes and interacts with the tight junction scaffolding proteins TJP1 and TJP2 in polarized epithelial cells, suggesting that USP53 is part of the tight junction complex. The barrier properties of tight junctions of the stria vascularis appeared intact in a biotin tracer assay, but the endocochlear potential is reduced in adult mambo mice. Hair cell degeneration in mambo mice precedes endocochlear potential decline and is rescued in cochlear organotypic cultures in low potassium milieu, indicating that hair cell loss is triggered by extracellular factors. Remarkably, heterozygous mambo mice show increased susceptibility to noise injury at high frequencies. We conclude that USP53 is a novel tight junction-associated protein that is essential for the survival of auditory hair cells and normal hearing in mice, possibly by modulating the barrier properties and mechanical stability of tight junctions. SIGNIFICANCE STATEMENT Hereditary hearing loss is extremely prevalent in the human population, but many genes linked to hearing loss remain to be discovered. Forward genetics screens in mice have facilitated the identification of genes involved in sensory perception and provided valuable animal models for hearing loss in humans. This involves introducing random mutations in mice, screening the mice for hearing defects, and mapping the causative mutation. Here, we have identified a mutation in the Usp53 gene that causes progressive hearing loss in the mambo mouse line. We demonstrate that USP53 is a catalytically inactive deubiquitinating enzyme and a novel component of tight junctions that is necessary for sensory hair cell survival and inner ear homeostasis.


International Journal of Systematic and Evolutionary Microbiology | 2012

Phorcysia thermohydrogeniphila gen. nov., sp. nov., a thermophilic, chemolithoautotrophic, nitrate- ammonifying bacterium from a deep-sea hydrothermal vent

Ileana Pérez-Rodríguez; Ashley Grosche; Lynnicia N. Massenburg; Valentin Starovoytov; Richard A. Lutz; Costantino Vetriani

A novel hyperthermophilic, anaerobic, chemolithoautotrophic bacterium, designated strain HB-8(T), was isolated from the tube of Alvinella pompejana tubeworms collected from the wall of an actively venting sulfide structure on the East Pacific Rise at 13° N. The cells were Gram-negative rods, approximately 1.0-1.5 µm long and 0.5 µm wide. Strain HB-8(T) grew between 65 and 80 °C (optimum 75 °C), 15 and 35 g NaCl l(-1) (optimum 30 g l(-1)) and pH 4.5 and 8.5 (optimum pH 6.0). Generation time under optimal conditions was 26 min. Growth occurred under chemolithoautotrophic conditions with H(2) as the energy source and CO(2) as the carbon source. Nitrate and sulfur were used as electron acceptors, with concomitant formation of ammonium or hydrogen sulfide, respectively. The presence of lactate, formate, acetate or tryptone in the culture medium inhibited growth. The G+C content of the genomic DNA was 47.8 mol%. Phylogenetic analysis of the 16S rRNA gene and of the alpha subunit of the ATP citrate lyase of strain HB-8(T) indicated that this organism formed a novel lineage within the class Aquificae, equally distant from the type strains of the type species of the three genera that represent the family Desulfurobacteriaceae: Thermovibrio ruber ED11/3LLK8(T), Balnearium lithotrophicum 17S(T) and Desulfurobacterium thermolithotrophum BSA(T). The polar lipids of strain HB-8(T) differed substantially from those of other members of the Desulfurobacteriaceae, and this bacterium produced novel quinones. On the basis of phylogenetic, physiological and chemotaxonomic characteristics, it is proposed that the organism represents a novel genus and species within the family Desulfurobacteriaceae, Phorcysia thermohydrogeniphila gen. nov., sp. nov. The type strain of Phorcysia thermohydrogeniphila is HB-8(T) ( = DSM 24425(T)  = JCM 17384(T)).


Standards in Genomic Sciences | 2013

Complete genome sequence of Granulicella tundricola type strain MP5ACTX9T, an Acidobacteria from tundra soil

Suman R. Rawat; Minna K. Männistö; Valentin Starovoytov; Lynne Goodwin; Matt Nolan; Loren Hauser; Miriam Land; Karen W. Davenport; Tanja Woyke; Max M. Häggblom

Granulicella tundricola strain MP5ACTX9T is a novel species of the genus Granulicella in subdivision 1 Acidobacteria. G. tundricola is a predominant member of soil bacterial communities, active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. The organism is a cold-adapted acidophile and a versatile heterotroph that hydrolyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in metabolism and transport of carbohydrates, including gene modules encoding for the carbohydrate-active enzyme (CAZy) families for the breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides such as plant based carbon polymers. The genome of G. tundricola strain MP5ACTX9T consists of 4,309,151 bp of a circular chromosome and five mega plasmids with a total genome content of 5,503,984 bp. The genome comprises 4,705 protein-coding genes and 52 RNA genes.


International Journal of Systematic and Evolutionary Microbiology | 2012

Galenea microaerophila gen. nov., sp. nov., a mesophilic, microaerophilic, chemosynthetic, thiosulfate-oxidizing bacterium isolated from a shallow-water hydrothermal vent.

Donato Giovannelli; Ashley Grosche; Valentin Starovoytov; Michail M. Yakimov; Elena Manini; Costantino Vetriani

A mesophilic, strictly microaerophilic, chemosynthetic bacterium, designated strain P2D(T), was isolated from the sediment of an active shallow-water hydrothermal vent in Paleochori Bay, on the Greek island of Milos. The cells were Gram-staining-negative rods that measured approximately 0.8-1.3 µm in length and 0.4-0.5 µm in width. Strain P2D(T) grew at 20-50 °C (optimum 35 °C), with 1.0-5.0% (w/v) NaCl (optimum 3.0%), and at pH 4.5-8.0 (optimum pH 5.5). The generation time under optimal conditions was 1.1 h. Growth occurred under chemolithoautotrophic conditions with S₂O₃²⁻ and CO(2) as the energy and carbon sources, respectively. Oxygen (5%) was used as sole terminal electron acceptor. No growth was observed in the presence of acetate, formate, lactate, tryptone or peptone. Chemolithoheterotrophic growth occurred when d-glucose or sucrose were present as carbon sources. None of the organic compounds tested was used as an electron donor. The genomic DNA G+C content of the novel strain was 44.9 mol%. In a phylogenetic analysis based on 16S rRNA gene sequences, strain P2D(T) was found to be most closely related to Thiomicrospira psychrophila DSM 13453(T) (92.8% sequence similarity). Based on the phylogenetic, physiological and chemotaxonomic evidence, strain P2D(T) represents a novel species of a new genus within the class Gammaproteobacteria of the family Piscirickettsiaceae, for which the name Galenea microaerophila gen. nov., sp. nov. is proposed. The type strain of the type species is P2D(T) ( = DSM 24963(T) = JCM 17795(T)).


Standards in Genomic Sciences | 2011

Complete genome sequence of Desulfurispirillum indicum strain S5T

Elisabetta Bini; Ines Rauschenbach; Priya Narasingarao; Valentin Starovoytov; Lauren Hauser; Cynthia D. Jeffries; Miriam Land; David Bruce; Chris Detter; Lynne Goodwin; Shunsheng Han; Brittany Held; Roxanne Tapia; Alex Copeland; Natalia Ivanova; Natalia Mikhailova; Matt Nolan; Amrita Pati; Len A. Pennacchio; Sam Pitluck; Tanja Woyke; Max M. Häggblom

Desulfurispirillum indicum strain S5T is a strictly anaerobic bacterium isolated from river sediment in Chennai, India. D. indicum belongs to the deep branching phylum of Chrysiogenetes, which currently only includes three other cultured species. Strain S5T is the type strain of the species and it is capable of growth using selenate, selenite, arsenate, nitrate or nitrite as terminal electron acceptors. The 2,928,377 bp genome encodes 2,619 proteins and 49 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of arsenic and selenium, in addition to deepening our knowledge of the underrepresented phylum of Chrysiogenetes.

Collaboration


Dive into the Valentin Starovoytov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Woyke

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matt Nolan

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar

Miriam Land

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minna K. Männistö

Finnish Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge