Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentin Verret is active.

Publication


Featured researches published by Valentin Verret.


Acta Biomaterialia | 2014

Poly(ethylene glycol) methacrylate hydrolyzable microspheres for transient vascular embolization.

Stéphanie Louguet; Valentin Verret; Laurent Bédouet; Emeline Servais; Florentina Pascale; Michel Wassef; Denis Labarre; Alexandre Laurent; Laurence Moine

Poly(ethylene glycol) methacrylate (PEGMA) hydrolyzable microspheres intended for biomedical applications were readily prepared from poly(lactide-co-glycolide) (PLGA)-poly(ethylene glycol) (PEG)-PLGA crosslinker and PEGMA as a monomer using a suspension polymerization process. Additional co-monomers, methacrylic acid and 2-methylene-1,3-dioxepane (MDO), were incorporated into the initial formulation to improve the properties of the microspheres. All synthesized microspheres were spherical in shape, calibrated in the 300-500 μm range, swelled in phosphate-buffered saline (PBS) and easily injectable through a microcatheter. Hydrolytic degradation experiments performed in PBS at 37 °C showed that all of the formulations tested were totally degraded in less than 2 days. The resulting degradation products were a mixture of low-molecular-weight compounds (PEG, lactic and glycolic acids) and water-soluble polymethacrylate chains having molecular weights below the threshold for renal filtration of 50 kg mol(-1) for the microspheres containing MDO. Both the microspheres and the degradation products were determined to exhibit minimal cytotoxicity against L929 fibroblasts. Additionally, in vivo implantation in a subcutaneous rabbit model supported the in vitro results of a rapid degradation rate of microspheres and provided only a mild and transient inflammatory reaction comparable to that of the control group.


Journal of Vascular and Interventional Radiology | 2011

The arterial distribution of Embozene and Embosphere microspheres in sheep kidney and uterus embolization models.

Valentin Verret; Saida Homayra Ghegediban; Michel Wassef; Jean Pierre Pelage; Jafar Golzarian; Alexandre Laurent

PURPOSE To compare the in vivo distribution of the new embolic Embozene versus Embosphere as a control in the sheep renal and uterine vasculature. MATERIALS AND METHODS Twelve sheep (three per group of product and size) were selectively embolized with Embozene 700 μm, Embozene 900 μm, Embosphere 500-700 μm, or Embosphere 700-900 μm, in one renal artery (0.5 mL microspheres) and in the two uterine arteries (0.25 mL each) and sacrificed 72 hours later for pathologic examination of kidney and uterus. Partition of microspheres in the vasculature was determined according to a classification of the renal and the uterine vasculatures into several zones. Vascular diameters and microsphere deformation were measured. RESULTS Embozene 700 μm and Embozene 900 μm occluded significantly more distally than Embosphere 500-700 μm and Embosphere 700-900 μm in renal and uterine vasculature. For Embozene, the vessel diameter was not significantly different between the two sizes, for each organ, whereas it was significantly larger for Embosphere 700-900 μm than for Embosphere 500-700 μm in each organ. Embozene deformation was significantly higher than that of Embosphere in renal and uterine vasculature, increased from proximal to distal in location for both organs and correlated negatively with vessel diameter (Rho = -0.623; P < .0001). Embosphere deformation did not vary according to the zone. CONCLUSIONS Embozene microspheres have a higher in vivo deformation, which results in a more distal occlusion within the vascular network compared with reference Embosphere microspheres. The diameter of occluded vessels varied for the tested size range for Embosphere but was independent of the tested microsphere size range used for Embozene. The deformation of Embozene appears to determine the size of the vessels occluded as opposed to the granulometric particle size, which makes level of occlusion unpredictable.


Journal of Vascular and Interventional Radiology | 2014

A Novel Resorbable Embolization Microsphere for Transient Uterine Artery Occlusion: A Comparative Study with Trisacryl-Gelatin Microspheres in the Sheep Model

Valentin Verret; Jean Pierre Pelage; Michel Wassef; Stéphanie Louguet; Emeline Servais; Laurent Bédouet; Thomas Beaulieu; Laurence Moine; Alexandre Laurent

PURPOSE To evaluate angiographic recanalization, inflammatory reaction, and uterine damage after sheep uterine artery embolization (UAE) with a novel calibrated resorbable embolization microsphere (REM) and compare the results with control nonresorbable microspheres. MATERIALS AND METHODS Six hormonally artificially cycled sheep underwent bilateral UAE until stasis with either REM or trisacryl-gelatin microspheres (TGMS). At 7 days, control angiograms were obtained to assess the residual vascularization at arterial and parenchymal phases. The animals were then sacrificed for analysis of the presence of microspheres, inflammatory foreign body reaction, and surface areas of uterine damage. RESULTS Mean volume of microspheres injected per uterine artery (UA) or per animal did not differ between groups. At day 7, the flow was normal for six of six UAs that received embolization with REM versus only three of six UAs with TGMS (P = .0455, χ(2) test). Uterine parenchymography showed no defects in six UAs in the REM group versus five defects in six UAs in the TGMS group (P = .0060, χ(2) test). No REM or residual fragments of microspheres were observed on histologic analysis. TGMS were observed in tissues and accompanied by a mild inflammatory response. Necrosis rates were not significantly different between the two products, either in endometrium (REM 23.5% ± 28.8% [median 8.1%] vs TGMS 21.8% ± 23.7% [median 14.6%]) or in myometrium (REM 8.2% ± 22.7% [median 0.0%] vs TGMS 8.8% ± 20.8% [median 0.9%]). Endometrium alteration rate was lower with REM than with TGMS (39.7% ± 25.7% [median 34%] vs 60.6% ± 27.1% [median 71%]; P = .0060, Mann-Whitney test). Myometrium alteration rates were not significantly different between REM (45.7% ± 37.1% [median 63.0%]) and TGMS (37.8% ± 34.0% [median 19.1%]). CONCLUSIONS At 1 week after sheep UAE with REM, the recanalization was complete, the microspheres were completely degraded, and there was no remnant inflammatory response.


Journal of Vascular and Interventional Radiology | 2013

Targeting and Recanalization after Embolization with Calibrated Resorbable Microspheres versus Hand-cut Gelatin Sponge Particles in a Porcine Kidney Model

Noboru Maeda; Valentin Verret; Laurence Moine; Laurent Bédouet; Stéphanie Louguet; Emeline Servais; Keigo Osuga; Noriyuki Tomiyama; Michel Wassef; Alexandre Laurent

PURPOSE To report on polyethylene glycol hydrogel-based resorbable embolization microspheres (REM) that were synthesized to resorb in < 24 hours, before inflammation and vascular remodeling, to achieve a complete arterial recanalization and to compare targeting and recanalization of REM of 300-500 µm, 500-700 µm, and 700-900 µm with hand-cut gelatin sponge particles (GSP). MATERIALS AND METHODS Eight pigs underwent polar renal artery embolization with REM or GSP. Angiograms were obtained before embolization and 10 minutes and 7 days after embolization before pigs were sacrificed to determine the occlusion level, the percentage of occlusion, and the recanalization rate for each product. The distribution of embolic material was assessed in pathology, and infarction rate of the kidneys was measured. RESULTS REM of 300-500 µm occluded more distal vessels than REM of 500-700 µm and 700-900 µm. At day 7, the recanalization rate was complete for the larger REM, whereas it was about 60% for the two smaller sizes. REM were completely degraded, with no residual material or inflammation. GSP occluded more proximal arteries than REM of 700-900 µm, were partly degraded at day 7, and were accompanied by a foreign body reaction in proximal and distal arteries. GSP recanalized at 79%. The infarction rate was higher with the two smaller sizes of REM and with GSP than with the largest REM. CONCLUSIONS REM of different sizes targeted different occlusion levels in kidney arteries. GSP provided an extended occlusion level without actual targeting. Regardless of embolic material used, angiographic recanalization of renal arteries depended on the extent of necrosis. REM of 700-900 µm demonstrated the lowest infarction rate and the best recanalization rate.


International Journal of Pharmaceutics | 2015

Anti-angiogenic drug delivery from hydrophilic resorbable embolization microspheres: An in vitro study with sunitinib and bevacizumab

Laurent Bédouet; Valentin Verret; Stéphanie Louguet; Emeline Servais; Florentina Pascale; Anne Beilvert; Minh-Tâm Baylatry; Denis Labarre; Laurence Moine; Alexandre Laurent

Anti-angiogenic (AA) drugs are proposed as novel agents for targeted therapies in hepatocellular carcinoma (HCC). Loading of AA drugs into drug delivery systems for local delivery would reduce their side effects. The present study investigated the loading and the delivery of two AA drugs, sunitinib and bevacizumab, from one day-resorbable embolization microspheres (REM). REM were prepared with 10 or 20% of methacrylic acid (MA) as active drug binding monomer. Sterilized beads (100-300 μm) were analyzed for cytotoxicity, AA loading and in vitro release. REM modified with MA were not cytotoxic and extemporaneous drug loading was significantly higher on REM containing 20% of MA. The drug release in saline buffer was sustained for several hours before complete REM degradation. MA content had low effect on drug release profile. When eluted from REM, sunitinib and bevacizumab reduced viability of tumoral VX2 cells, and proliferation of human endothelial cells, respectively. Deliverability of REM via microcatheter was not impaired by the loaded drugs. As conclusion, the loading values of sunitinib and bevacizumab on REM were close to those achieved for cytotoxic drugs onto non-degradable MS used in chemoembolization of HCC. Transcatheter delivery to liver tumors of anti-angiogenics could be achieved with REM.


Journal of Vascular and Interventional Radiology | 2012

Modified Model of VX2 Tumor Overexpressing Vascular Endothelial Growth Factor

Florentina Pascale; S. Ghegediban; Michel Bonneau; Laurent Bédouet; Julien Namur; Valentin Verret; Isabelle Schwartz-Cornil; Michel Wassef; A. Laurent

PURPOSE To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. MATERIALS AND METHODS The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. RESULTS Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). CONCLUSIONS The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies.


European Journal of Pharmaceutical Sciences | 2011

IL6 and TNF expression in vessels and surrounding tissues after embolization with ibuprofen-loaded beads confirms diffusion of ibuprofen

Valentin Verret; Claudia Bevilacqua; Isabelle Schwartz-Cornil; Jean-Pierre Pelage; Michel Wassef; Julien Namur; Laurent Bédouet; Andrew L. Lewis; Patrice Martin; Alexandre Laurent

PURPOSE In the treatment of uterine fibroid embolization related pain, the use of embolics loaded with non-steroidal anti-inflammatory drugs (NSAID) relies on an efficient delivery and impregnation of the embolized tissue. Immuno-labelling and spectroscopic techniques have demonstrated the release of ibuprofen from drug eluting beads (Wassef et al., 2008; Namur et al., 2009) but failed to demonstrate diffusion of the drug beyond the vascular wall (VW). We investigated whether ibuprofen diffused beyond the VW in surrounding tissues (ST), by tracking its biological effects through the modulation of expression of two main inflammatory cytokines. MATERIALS AND METHODS Uterine arteries of 6 sheep were embolized with ibuprofen loaded beads (IBU-BB) or non-loaded beads (BB) and sacrificed at one week. On frozen tissue slices, VWs of occluded arteries were isolated from ST using laser capture microdissection. RNA was extracted from VW and ST samples. Gene expression of IL6 and TNFα genes was measured by quantitative real-time PCR (qPCR). RESULTS IL6 expression was significantly increased in IBU-BB compared to BB group both in VW (VW: fold-change (FC)=4.9, p=0.0009) and ST (ST: FC=8.7, p=0.0003). In IBU-BB, IL6 was significantly more expressed in VW than in ST (FC=4.4; p=0.0009). TNFα expression was not significantly different between IBU-BB and BB groups. CONCLUSION Using qPCR+microdissection was useful to evaluate the spread of the biological effects of drug-loaded systems which attest of the tissular release. This approach can be considered when other drug detection techniques are unsuccessful or difficult to achieve. IL6 can be used as a marker of ibuprofen released by drug eluting beads in uterus. Gradient of expression of IL6 suggests diffusion of ibuprofen across the VW into the ST.


Biomaterials | 2011

Influence of degradation on inflammatory profile of polyphosphazene coated PMMA and trisacryl gelatin microspheres in a sheep uterine artery embolization model

Valentin Verret; Michel Wassef; Jean Pierre Pelage; Saida Homayra Ghegediban; Luc Jouneau; Laurence Moine; Denis Labarre; Jafar Golzarian; Isabelle Schwartz-Cornil; Alexandre Laurent

Embolization with microspheres is widely applied to treat uterine fibroids. However, the foreign body reaction that could result from the degradation of the microspheres remains to be evaluated to adequately appreciate the tissular tolerance to such biomaterials. We compared herein the in situ degradation of PMMA microspheres coated with polyphosphazene (PMMA-PPms) and trisacryl gelatin microspheres (TGms) and we thoroughly investigated the induced local inflammatory responses, at 1 and 4 weeks after uterine artery embolization in sheep, by using immunohistochemistry and microarray analyses. PMMA-PPms underwent an acute and partial degradation that was associated with the early recruitment of phagocytic cells (CD172a+ and MHCII+), and with the up-regulated expression of genes involved in the movement of phagocytes (ALOX5AP, CXCL2, CXCL5, IL8, PTGS2, YARS). By contrast, TGms were not degraded and triggered a different inflammation profile including the recruitment of FBR Giant Cells and T-lymphocytes (CD4+) and the increased expression of genes involved in lymphocyte activation (CXCL10, IL2RG, IRAK4, MALT1). Our results indicate that, in contrast to a non-degradable microsphere such as TGms which is associated to a poorly inflammatory foreign body reaction that rapidly resolves, PMMA-PPms, which is partially degradable, rapidly recruits and activates inflammatory phagocytes, thus delaying the resolution of the foreign body reaction.


Journal of Vascular and Interventional Radiology | 2015

Safety and efficacy compared between irinotecan-loaded microspheres HepaSphere and DC bead in a model of VX2 liver metastases in the rabbit.

Julien Namur; Florentina Pascale; Noboru Maeda; Manon Sterba; Saida Homayra Ghegediban; Valentin Verret; Angelo Paci; Atmane Seck; Keigo Osuga; Michel Wassef; Philippe Reb; Alexandre Laurent

PURPOSE To compare irinotecan-eluting HepaSphere (BioSphere Medical, Roissy-en-France, France) and DC Bead (Biocompatibles UK Ltd, London, United Kingdom) embolization microspheres for distribution in tumors, release properties, tolerance, and antitumor effects in a model of liver metastases in the rabbit. MATERIALS AND METHODS Multiple liver tumors were created by injection of a VX2 cell suspension in the portal vein of rabbits. After 2 weeks, embolization of the proper hepatic artery was performed with a fixed volume of bland HepaSphere (n = 5), irinotecan-loaded HepaSphere (n = 6), or irinotecan-loaded DC Bead (n = 5) microspheres. Untreated animals injected with VX2 cells served as control animals (n = 5). Plasma pharmacokinetics of irinotecan and its metabolite SN38 were assessed. Histopathology and gene expression analysis were performed 3 days after treatment. RESULTS Among all treated groups, there was no significant difference in liver enzymes or liver damage on histology. Irinotecan-loaded HepaSphere microspheres showed a faster release of drug than DC Bead microspheres leading to a twofold higher concentration of drug in plasma for HepaSphere microspheres. HepaSphere microspheres were less frequently found inside tumor nodules on histology than DC Bead microspheres (11% vs 48%, P < .001) because of their larger size. Tumor necrosis was significantly greater for rabbits given irinotecan-loaded HepaSphere microspheres (69% of total tumor surface) and rabbits given DC Bead microspheres (50% of total tumor surface) compared with control animals (24% of total tumor surface, P = .006 and P = .047). CONCLUSIONS HepaSphere and DC Bead microspheres loaded with irinotecan caused significant necrosis of tumor nodules in a model of VX2 liver metastases. This outcome was mostly due to irinotecan delivery rather than vascular occlusion by the microspheres and was greater for HepaSphere microspheres compared with DC Bead microspheres.


CardioVascular and Interventional Radiology | 2013

Toxicity of Doxorubicin on Pig Liver After Chemoembolization with Doxorubicin-loaded Microspheres: A Pilot DNA-microarrays and Histology Study

Valentin Verret; Julien Namur; Saida Homayra Ghegediban; Michel Wassef; Laurence Moine; Michel Bonneau; Jean-Pierre Pelage; Alexandre Laurent

Collaboration


Dive into the Valentin Verret's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Bédouet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Julien Namur

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Emeline Servais

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphanie Louguet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Florentina Pascale

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

A. Laurent

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge