Valentina Alena Girelli
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valentina Alena Girelli.
Rock Mechanics and Rock Engineering | 2016
Margherita Cecilia Spreafico; Mirko Francioni; Federico Cervi; Doug Stead; Gabriele Bitelli; Monica Ghirotti; Valentina Alena Girelli; Claudio Corrado Lucente; Maria Alessandra Tini; Lisa Borgatti
Landslides of the lateral spreading type, involving brittle geological units overlying ductile terrains, are a common occurrence in the sandstone and limestone plateaux of the northern Apennines of Italy. The edges of these plateaux are often the location of rapid landslide phenomena, such as rock slides, rock falls and topples. In this paper, we present a back analysis of a recent landslide (February 2014), involving the north-eastern sector of the San Leo rock slab (northern Apennines, Emilia-Romagna Region) which is a representative example of this type of phenomena. The aquifer hosted in the fractured slab, due to its relatively higher secondary permeability in comparison to the lower clayey units leads to the development of perennial and ephemeral springs at the contact between the two units. The related piping erosion phenomena, together with slope processes in the clay-shales have led to the progressive undermining of the slab, eventually predisposing large-scale landslides. Stability analyses were conducted coupling terrestrial laser scanning (TLS) and distinct element methods (DEMs). TLS point clouds were analysed to determine the pre- and post-failure geometry, the extension of the detachment area and the joint network characteristics. The block dimensions in the landslide deposit were mapped and used to infer the spacing of the discontinuities for insertion into the numerical model. Three-dimensional distinct element simulations were conducted, with and without undermining of the rock slab. The analyses allowed an assessment of the role of the undermining, together with the presence of an almost vertical joint set, striking sub-parallel to the cliff orientation, on the development of the slope instability processes. Based on the TLS and on the numerical simulation results, an interpretation of the landslide mechanism is proposed.
European Journal of Remote Sensing | 2015
Margherita Cecilia Spreafico; Luigi Perotti; Federico Cervi; Marco Bacenetti; Gabriele Bitelli; Valentina Alena Girelli; Emanuele Mandanici; Maria Alessandra Tini; Lisa Borgatti
Abstract The San Leo village, located near to Rimini (northern Italy), was built in the medieval period on the top of a calcarenite and sandstone plateau, affected by lateral spreading associated with secondary rock falls and topples. In fact, a number of landslides endangered the historical town since centuries. In order to describe the structural features driving these slope instability phenomena, a complete Terrestrial Laser Scanner (TLS) survey all around the San Leo cliff was performed. Moreover, Close-Range Photogrammetric (CRP) surveys and conventional geomechanical surveys on scanlines have been carried out. The 3D geometry of the cliffs was extracted and critical areas have been investigated in detail using dense Digital Surface Models (DSMs) obtained from CRP or TLS. The results were used to define the structural features of the plateau, to recognize more fractured areas, and to perform kinematic analyses, in order to assess the joint sets predisposing to slope instability at the cliff scale. The creation of a 3D model was also fundamental for the implementation of the geological model to be used in numerical modelling for hydrogeological characterization and slope stability analyses.
electronic imaging | 2007
Gabriele Bitelli; Valentina Alena Girelli; Fabio Remondino; Luca Vittuari
The generation of 3D models of objects has become an important research point in many fields of application like industrial inspection, robotics, navigation and body scanning. Recently the techniques for generating photo-textured 3D digital models have interested also the field of Cultural Heritage, due to their capability to combine high precision metrical information with a qualitative and photographic description of the objects. In fact this kind of product is a fundamental support for documentation, studying and restoration of works of art, until a production of replicas by fast prototyping techniques. Close-range photogrammetric techniques are nowadays more and more frequently used for the generation of precise 3D models. With the advent of automated procedures and fully digital products in the 1990s, it has become easier to use and cheaper, and nowadays a wide range of commercial software is available to calibrate, orient and reconstruct objects from images. This paper presents the complete process for the derivation of a photorealistic 3D model of an important basalt stela (about 70 x 60 x 25 cm) discovered in the archaeological site of Tilmen Höyük, in Turkey, dating back to 2nd mill. BC. We will report the modeling performed using passive and active sensors and the comparison of the achieved results.
International Journal of Geophysics | 2011
Gabriele Bitelli; Giorgia Gatta; Valentina Alena Girelli; Luca Vittuari; Antonio Zanutta
The paper presents an example of integrated surveying and monitoring activities for the control of an ancient structure, the Casalecchio di Reno sluice, located near Bologna, Italy. Several geomatic techniques were applied (classical topography, high-precision spirit levelling, terrestrial laser scanning, digital close-range photogrammetry, and thermal imagery). All these measurements were put together in a unique reference system and used in order to study the stability and the movements of the structure over the period of time observed. Moreover, the metrical investigations allowed the creation of a 3D model of the structure, and the comparison between two situations, before and after the serious damages suffered by the sluice during the winter season 2008-2009. Along with the detailed investigations performed on individual portions of the structure, an analysis of the whole sluice, carried out at a regional scale, was done via the use of aerial photogrammetry, using both recently acquired images and historical photogrammetric coverage. The measurements were carried out as part of a major consolidation and restoration activity, carried out by the “Consorzio della Chiusa di Casalecchio e del Canale di Reno”.
Remote Sensing | 2015
Gabriele Bitelli; Paolo Conte; Tamas Csoknyai; Francesca Franci; Valentina Alena Girelli; Emanuele Mandanici
The rising attention to energy consumption problems is renewing interest in the applications of thermal remote sensing in urban areas. The research presented here aims to test a methodology to retrieve information about roof surface temperature by means of a high resolution orthomosaic of airborne thermal infrared images, based on a case study acquired over Bologna (Italy). The ultimate aim of such work is obtaining datasets useful to support, in a GIS environment, the decision makers in developing adequate strategies to reduce energy consumption and CO2 emission. In the processing proposed, the computing of radiometric quantities related to the atmosphere was performed by the Modtran 5 radiative transfer code, while an object-oriented supervised classification was applied on a WorldView-2 multispectral image, together with a high-resolution digital surface model (DSM), to distinguish among the major roofing material types and to model the effects of the emissivity. The emissivity values were derived from literature data, except for some roofing materials, which were measured during ad hoc surveys, by means of a thermal camera and a contact probe. These preliminary results demonstrate the high sensitivity of the model to the variability of the surface emissivity and of the atmospheric parameters, especially transmittance and upwelling radiance.
Remote Sensing | 2016
Emanuele Mandanici; Paolo Conte; Valentina Alena Girelli
A single-band surface temperature retrieval method is proposed, aiming at achieving a better accuracy by exploiting the integration of aerial thermal images with LiDAR data and ground surveys. LiDAR data allow the generation of a high resolution digital surface model and a detailed modeling of the Sky-View Factor (SVF). Ground surveys of surface temperature and emissivity, instead, are used to estimate the atmospheric parameters involved in the model (through a bounded least square adjustment) and for a first assessment of the accuracy of the results. The RMS of the difference between the surface temperatures computed from the model and measured on the check sites ranges between 0.8 °C and 1.0 °C, depending on the algorithm used to calculate the SVF. Results are in general better than the ones obtained without considering SVF and prove the effectiveness of the integration of different data sources. The proposed approach has the advantage of avoiding the modeling of the atmosphere conditions, which is often difficult to achieve with the desired accuracy; on the other hand, it is highly dependent on the accuracy of the data measured on the ground.
Archive | 2015
Margherita Cecilia Spreafico; Francesca Franci; Gabriele Bitelli; Valentina Alena Girelli; Alberto Landuzzi; Claudio Corrado Lucente; Emanuele Mandanici; Maria Alessandra Tini; Lisa Borgatti
The Valmarecchia area (RN, Italy), located between the Emilia-Romagna and Marche regions, displays peculiar geological features, being characterized by rocky slabs lying on gentle slopes. The main fortified villages of the area, remarkable for historical and artistic assets, were built in the medieval period on these slabs for defense purposes. The area is affected by widespread landslide phenomena, involving both the rocky slabs and the underlying clayey shales. The main phenomena acting on the slabs are lateral spreading, with associated rock falls and topples. In this area, a multidisciplinary project, involving different expertise, like geology, geodesy, geomorphology, hydrogeology, soil and rocks mechanics is ongoing. In this particular context, in order to achieve a clear recognition of the instability phenomena, it is necessary to understand the movement patterns and the eventual differential displacement occurring in the slabs. Monitoring activities, joined with geological and geomorphological interpretation, are one of the fundamental step for a deep understanding of the movements and for the risk management purposes. In many cases, the monitoring system is missing or only poor data are available, therefore an approach for the Permanent Scatterers (PS) data analysis has been used, combining analysis on the PS velocity, on the direction of the movement and statistical consideration on the time series trend. Some preliminary results regarding the rock slab on which the town of Verucchio (RN, Italy) is located are here presented.
Journal of Cultural Heritage | 2009
Gabriele Bitelli; Valentina Alena Girelli
Archive | 2004
Gabriele Bitelli; Valentina Alena Girelli; Maria Alessandra Tini; Luca Vittuari
ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | 2017
Gabriele Bitelli; M. Dellapasqua; Valentina Alena Girelli; E. Sanchini; Maria Alessandra Tini