Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentina Barrera is active.

Publication


Featured researches published by Valentina Barrera.


Blood | 2011

Host fibrinogen stably bound to hemozoin rapidly activates monocytes via TLR-4 and CD11b/CD18-integrin: a new paradigm of hemozoin action

Valentina Barrera; Oleksii A. Skorokhod; Denisa Baci; Giuliana Gremo; Paolo Arese; Evelin Schwarzer

Natural hemozoin (nHZ), prepared after schizogony, consists of crystalline ferriprotoporphyrin-IX dimers from undigested heme bound to host and parasite proteins and lipids. Phagocytosed nHZ alters important functions of host phagocytes. Most alterations are long-term effects. We show that host fibrinogen (FG) was constantly present (at ~ 1 FG per 25 000 HZ-heme molecules) and stably bound to nHZ from plasma-cultured parasites. FG was responsible for the rapid 100-fold stimulation of reactive oxygen species production and 50-fold increase of TNF and monocyte chemotactic protein 1 by human monocytes. Those effects, starting within minutes after nHZ cell contact, were because of interaction of FG with FG-receptors TLR4 and integrin CD11b/CD18. Receptor blockage by specific mAbs or removal of FG from nHZ abrogated the effects. nHZ-opsonizing IgGs contribute to the stimulatory response but are not essential for FG effects. Immediate increase in reactive oxygen species and TNF may switch on previously described long-term effects of nHZ, largely because of HZ-generated lipo-peroxidation products 15(S,R)-hydroxy-6,8,11,13-eicosatetraenoic acid and 4-hydroxynonenal. The FG/HZ effects mediated by TLR4/integrins represent a novel paradigm of nHZ activity and allow expansion of nHZ effects to nonphagocytic cells, such as endothelia and airway epithelia, and lead to a better understanding of organ pathology in malaria.


Blood | 2010

Inhibition of erythropoiesis in malaria anemia: role of hemozoin and hemozoin-generated 4-hydroxynonenal.

Oleksii A. Skorokhod; Luisa Caione; Tiziana Marrocco; Giorgia Migliardi; Valentina Barrera; Paolo Arese; Wanda Piacibello; Evelin Schwarzer

Severe malaria anemia is characterized by inhibited/altered erythropoiesis and presence of hemozoin-(HZ)-laden bone-marrow macrophages. HZ mediates peroxidation of unsaturated fatty acids and production of bioactive aldehydes such as 4-hydroxynonenal (HNE). HZ-laden human monocytes inhibited growth of cocultivated human erythroid cells and produced HNE that diffused to adjacent cells generating HNE-protein adducts. Cocultivation with HZ or treatment with low micromolar HNE inhibited growth of erythroid cells interfering with cell cycle without apoptosis. After HZ/HNE treatment, 2 critical proteins in cell-cycle regulation, p53 and p21, were increased and the retinoblastoma protein, central regulator of G₁-to-S-phase transition, was consequently hypophosphorylated, while GATA-1, master transcription factor in erythropoiesis was reduced. The resultant decreased expression of cyclin A and D2 retarded cell-cycle progression in erythroid cells and the K562 cell line. As a second major effect, HZ and HNE inhibited protein expression of crucial receptors (R): transferrinR1, stem cell factorR, interleukin-3R, and erythropoietinR. The reduced receptor expression and the impaired cell-cycle activity decreased the production of cells expressing glycophorin-A and hemoglobin. Present data confirm the inhibitory role of HZ, identify HNE as one HZ-generated inhibitory molecule and describe molecular targets of HNE in erythroid progenitors possibly involved in erythropoiesis inhibition in malaria anemia.


Brain | 2014

Cerebral malaria in children: using the retina to study the brain

Ian J. C. MacCormick; Nicholas A. V. Beare; Terrie E. Taylor; Valentina Barrera; Valerie A. White; Paul Hiscott; Malcolm E. Molyneux; Baljean Dhillon; Simon P. Harding

Cerebral malaria is a dangerous complication of Plasmodium falciparum infection, which takes a devastating toll on children in sub-Saharan Africa. Although autopsy studies have improved understanding of cerebral malaria pathology in fatal cases, information about in vivo neurovascular pathogenesis is scarce because brain tissue is inaccessible in life. Surrogate markers may provide insight into pathogenesis and thereby facilitate clinical studies with the ultimate aim of improving the treatment and prognosis of cerebral malaria. The retina is an attractive source of potential surrogate markers for paediatric cerebral malaria because, in this condition, the retina seems to sustain microvascular damage similar to that of the brain. In paediatric cerebral malaria a combination of retinal signs correlates, in fatal cases, with the severity of brain pathology, and has diagnostic and prognostic significance. Unlike the brain, the retina is accessible to high-resolution, non-invasive imaging. We aimed to determine the extent to which paediatric malarial retinopathy reflects cerebrovascular damage by reviewing the literature to compare retinal and cerebral manifestations of retinopathy-positive paediatric cerebral malaria. We then compared retina and brain in terms of anatomical and physiological features that could help to account for similarities and differences in vascular pathology. These comparisons address the question of whether it is biologically plausible to draw conclusions about unseen cerebral vascular pathogenesis from the visible retinal vasculature in retinopathy-positive paediatric cerebral malaria. Our work addresses an important cause of death and neurodisability in sub-Saharan Africa. We critically appraise evidence for associations between retina and brain neurovasculature in health and disease, and in the process we develop new hypotheses about why these vascular beds are susceptible to sequestration of parasitized erythrocytes.


The Journal of Infectious Diseases | 2015

Severity of Retinopathy Parallels the Degree of Parasite Sequestration in the Eyes and Brains of Malawian Children With Fatal Cerebral Malaria

Valentina Barrera; Paul Hiscott; Alister Craig; Valerie A. White; Danny A. Milner; Nicholas V Beare; Ian J. C. MacCormick; Steve Kamiza; Terrie E. Taylor; Malcolm E. Molyneux; Simon P. Harding

Background. Malarial retinopathy (MR) has diagnostic and prognostic value in children with Plasmodium falciparum cerebral malaria (CM). A clinicopathological correlation between observed retinal changes during life and the degree of sequestration of parasitized red blood cells was investigated in ocular and cerebral vessels at autopsy. Methods. In 18 Malawian children who died from clinically defined CM, we studied the intensity of sequestration and the maturity of sequestered parasites in the retina, in nonretinal ocular tissues, and in the brain. Results. Five children with clinically defined CM during life had other causes of death identified at autopsy, no MR, and scanty intracerebral sequestration. Thirteen children had MR and died from CM. MR severity correlated with percentage of microvessels parasitized in the retina, brain, and nonretinal tissues with some neuroectodermal components (all P < .01). In moderate/severe MR cases (n = 8), vascular congestion was more intense (ρ = 0.841; P < .001), sequestered parasites were more mature, and the quantity of extraerythrocytic hemozoin was higher, compared with mild MR cases (n = 5). Conclusions. These data provide a histopathological basis for the known correlation between degrees of retinopathy and cerebral dysfunction in CM. In addition to being a valuable tool for clinical diagnosis, retinal observations give important information about neurovascular pathophysiology in pediatric CM.


Free Radical Biology and Medicine | 2014

Malarial pigment hemozoin impairs chemotactic motility and transendothelial migration of monocytes via 4-hydroxynonenal

Oleksii A. Skorokhod; Valentina Barrera; Regine Heller; Franco Carta; Franco Turrini; Paolo Arese; Evelin Schwarzer

Natural hemozoin, nHZ, is avidly phagocytosed in vivo and in vitro by human monocytes. The persistence of the undigested β-hematin core of nHZ in the phagocyte lysosome for long periods of time modifies several cellular immune functions. Here we show that nHZ phagocytosis by human primary monocytes severely impaired their chemotactic motility toward MCP-1, TNF, and FMLP, by approximately 80% each, and their diapedesis across a confluent human umbilical vein endothelial cell layer toward MCP-1 by 45±5%. No inhibition was observed with latex-fed or unfed monocytes. Microscopic inspection revealed polarization defects in nHZ-fed monocytes due to irregular actin polymerization. Phagocytosed nHZ catalyzes the peroxidation of polyunsaturated fatty acids and generation of the highly reactive derivative 4-hydroxynonenal (4-HNE). Similar to nHZ phagocytosis, the exposure of monocytes to in vivo-compatible 4-HNE concentrations inhibited cell motility in both the presence and the absence of chemotactic stimuli, suggesting severe impairment of cytoskeleton dynamics. Consequently, 4-HNE conjugates with the cytoskeleton proteins β-actin and coronin-1A were immunochemically identified in nHZ-fed monocytes and mass spectrometrically localized in domains of protein-protein interactions involved in cytoskeleton reorganization and cell motility. The molecular and functional modifications of actin and coronin by nHZ/4-HNE may also explain impaired phagocytosis, another motility-dependent process previously described in nHZ-fed monocytes. Further studies will show whether impaired monocyte motility may contribute to the immunodepression and the frequent occurrence of secondary infections observed in malaria patients.


eLife | 2018

Neurovascular sequestration in paediatric P. falciparum malaria is visible clinically in the retina

Valentina Barrera; Ian J. C. MacCormick; Gabriela Czanner; Paul Hiscott; Valerie A. White; Alister Craig; Nicholas V Beare; Lucy Hazel Culshaw; Yalin Zheng; Simon Charles Biddolph; Danny A. Milner; Steve Kamiza; Malcolm E. Molyneux; Terrie E. Taylor; Simon P. Harding

Retinal vessel changes and retinal whitening, distinctive features of malarial retinopathy, can be directly observed during routine eye examination in children with P. falciparum cerebral malaria. We investigated their clinical significance and underlying mechanisms through linked clinical, clinicopathological and image analysis studies. Orange vessels and severe foveal whitening (clinical examination, n = 817, OR, 95% CI: 2.90, 1.96–4.30; 3.4, 1.8–6.3, both p<0.001), and arteriolar involvement by intravascular filling defects (angiographic image analysis, n = 260, 2.81, 1.17–6.72, p<0.02) were strongly associated with death. Orange vessels had dense sequestration of late stage parasitised red cells (histopathology, n = 29; sensitivity 0.97, specificity 0.89) involving 360° of the lumen circumference, with altered protein expression in blood-retinal barrier cells and marked loss/disruption of pericytes. Retinal whitening was topographically associated with tissue response to hypoxia. Severe neurovascular sequestration is visible at the bedside, and is a marker of severe disease useful for diagnosis and management.


Investigative Ophthalmology & Visual Science | 2018

Differential Distribution of Laminin N-Terminus α31 Across the Ocular Surface: Implications for Corneal Wound Repair

Valentina Barrera; Ld Troughton; Valentina Iorio; Siyin Liu; Olutobi Oyewole; Carl Sheridan; Kevin J. Hamill

Purpose Laminin N-terminus (LaNt) α31 is a relatively unstudied protein derived from the laminin α3 gene but structurally similar to netrins. LaNt α31 has, to date, been investigated only in two-dimensional (2D) keratinocyte culture where it influences cell migration and adhesion, processes integral to wound repair. Here we investigated LaNt α31 distribution in ocular surface epithelium, during limbal stem cell activation, and corneal wound healing. Methods Human, mouse, and pig eyes, ex vivo limbal explant cultures, and alkali burn wounds were processed for immunohistochemistry with antibodies against LaNt α31 along with progenitor cell–associated proteins. LaNt α31 expression was induced via adenoviral transduction into primary epithelial cells isolated from limbal explants, and cell spreading and migration were analyzed using live imaging. Results LaNt α31 localized to the basal layer of the conjunctival, limbal, and corneal epithelial cells. However, staining was nonuniform with apparent subpopulation enrichment, and some suprabasal reactivity was also noted. This LaNt α31 distribution largely matched that of keratin 15, epidermal growth factor receptor, and transformation-related protein 63α (p63α), and displayed similar increases in expression in activated limbal explants. During active alkali burn wound repair, LaNt α31 displayed increased expression in limbal regions and loss of basal restriction within the cornea. Distribution returned to predominately basal cell restricted once the wounded epithelium matured. Cultured corneal epithelial cells expressing LaNt α31 displayed increased 2D area and reduced migration, suggesting a functional link between this protein and key wound repair activities. Conclusions These data place LaNt α31 in position to influence laminin-dependent processes including wound repair and stem cell activation.


Brain | 2014

Reply: Retinopathy, histidine-rich protein-2 and perfusion pressure in cerebral malaria

Ian J. C. MacCormick; Nicholas A. V. Beare; Terrie E. Taylor; Valentina Barrera; Valerie A. White; Paul Hiscott; Malcolm E. Molyneux; Baljean Dhillon; Simon P. Harding

Sir, We thank Kariuki and Newton for their letter which raises several interesting points. We value their contributions to this discussion. Failure of cerebral autoregulation may be an important step in the cerebral malaria disease process. Ideally our review would have not only included comparisons of autoregulatory function in retinal and cerebral vessels, but also other important subjects such as the nature of the blood-tissue barriers, distribution of endothelial receptors, and vessel ultrastructure in retina and brain. Comparing and contrasting the retina with other areas of the CNS in terms of these and other features could well provide valuable insights, not just into cerebral malaria, but for a whole range of neurovascular diseases. We hope our paper will help to …


Malaria Journal | 2010

Transfer of 4-hydroxynonenal, a inhibitory hemozoin (HZ) product, from HZ or HZ-laden phagocytes to developing human erythroid cells. A model for erythropoiesis inhibition in malaria anemia

Oleksii A. Skorokhod; Luisa Caione; Giorgia Migliardi; Valentina Barrera; Wanda Piacibello; Evelin Schwarzer; Paolo Arese

Blood stage P. falciparum (Pf) accumulates hemozoin (HZ), the crystal of dimerized undigested heme. HZ wrapped up in the food vacuole membrane binds saturated and polyunsaturated fatty acids (PUFA) and proteins, generates bioactive ligands and is expelled in the blood during schizogony as residual body. HZ contains redox active iron that peroxidizes PUFA to produce bioactive hydroxy-PUFA (HETEs; HODEs) and terminal aldehydes (4-hydroxynonenal, HNE). HETEs is responsible for some of the HZ effects: (1) down-modulation of oxidative burst; (2) inhibition of dendritic cells (DC) differentiation-maturation; and (3) enhancement of expression and enzyme activity of metalloproteinase MMP-9. Low-micromolar HETE recapitulated effects (2) and (3). Recapitulation was abrogated by PPAR-gamma-receptor inhibitors. Other effects, such as inhibition of erythropoiesis, were due to the transfer of HNE to differentiating human erythroid precursors. Erythropoiesis was inhibited by transferred HNE via blockage of cell cycle and the down-regulation of protein expression of crucial receptors (erythropoietinR, transferrinR and stem-cell-factorR). Malarial dyserythropoiesis, which plays an important role in malaria anaemia (MA) is characterized by (1) decreased growth and differentiation of erythroid precursors; (2) low reticulocyte response; and (3) normal production of erythropoietin (EPO). In human bone marrow (BM) the erythroblastic island (EI) is the elementary unit of erythropoiesis in which a central macrophage (MAC) is surrounded by differentiating erythroid cells. In malaria anaemia, HZ-laden central MACs are closely adjacent to developing erythroid cells. HZ and HZ-laden human monocytes inhibited growth of co-cultivated human erythroid cells and produced HNE that diffused to adjacent cells generating HNE-protein adducts. Co-cultivation with HZ or treatment with low-micromolar HNE inhibited growth of erythroid cells interfering with cell cycle without apoptosis. Following HZ/HNE treatment, two critical proteins in cell cycle regulation, p53 and p21, were increased and the retinoblastoma protein, central regulator of G1-to-S-phase transition, was consequently hypophosphorylated, while GATA-1, master transcription factor in erythropoiesis was reduced. The resul was decreased expression of cyclin A and D2 retarded cell cycle progression in erythroid cells and the K562 cell line. As a second major effect, HZ and HNE inhibited protein expression of crucial receptors (R): transferrin R1, stem cell factorR, interleukin-3R and erythropoietinR. The reduced receptor expression and the impaired cell cycle activity decreased the production of cells expressing glycophorin-A and hemoglobin. In conclusion, present data confirm the inhibitory role of HZ, identify HNE as one HZ-generated inhibitory molecule and describe molecular targets of HNE in erythroid progenitors possibly involved in erythropoiesis inhibition in malaria anemia. Supported by Regione Piemonte, IARC and Compagnia di San Paolo grants to ES, WP and PA.


XIIth International Congress of Parasitology | 2010

Inhibition of erythropoiesis in malaria anaemia: role of hemozoin and hemozoin-generated 4-hydroxynonenal

Oleksii A. Skorokhod; Luisa Caione; Valentina Barrera; Wanda Piacibello; Paolo Arese; Evelin Schwarzer

Collaboration


Dive into the Valentina Barrera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Hiscott

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malcolm E. Molyneux

Malawi-Liverpool-Wellcome Trust Clinical Research Programme

View shared research outputs
Top Co-Authors

Avatar

Valerie A. White

Vancouver General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge