Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentina Berti is active.

Publication


Featured researches published by Valentina Berti.


Journal of Alzheimer's Disease | 2010

Pre-Clinical Detection of Alzheimer’s Disease Using FDG-PET, with or without Amyloid Imaging

Lisa Mosconi; Valentina Berti; Lidia Glodzik; Alberto Pupi; Susan De Santi; Mony J. de Leon

The development of prevention therapies for Alzheimers disease (AD) would greatly benefit from biomarkers that are sensitive to subtle brain changes occurring in the preclinical stage of the disease. Early diagnostics is necessary to identify and treat at risk individuals before irreversible neuronal loss occurs. In vivo imaging has long been used to evaluate brain structural and functional abnormalities as predictors of future AD in non-demented persons. Prior to development of amyloid-beta (Abeta) tracers for positron emission tomography (PET), the most widely utilized PET tracer in AD was 2-[18F]fluoro-2-Deoxy-D-glucose (FDG) PET. For over 20 years, FDG-PET has been used to measure cerebral metabolic rates of glucose (CMRglc), a proxy for neuronal activity, in AD. Many studies have shown that CMRglc reductions occur early in AD, correlate with disease progression, and predict histopathological diagnosis. This paper reviews reports of clinical and preclinical CMRglc reductions observed in association with genetic and non-genetic risk factors for AD. We then briefly review brain Abeta PET imaging studies in AD and discuss the potential of combining symptoms-sensitive FDG-PET measures with pathology-specific Abeta-PET to improve the early detection of AD.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Increased fibrillar amyloid-β burden in normal individuals with a family history of late-onset Alzheimer’s

Lisa Mosconi; Juha O. Rinne; Wai H. Tsui; Valentina Berti; Yi Li; Huiyu Wang; John M. Murray; Noora M. Scheinin; Kjell Någren; Schantel Williams; Lidia Glodzik; Susan De Santi; Shankar Vallabhajosula; Mony J. de Leon

Having a parent affected with late-onset Alzheimers disease (LOAD) is a major risk factor among cognitively normal (NL) individuals. This 11C-Pittsburgh Compound B (PiB)-PET study examines whether NL individuals with LOAD parents show increased fibrillar amyloid-beta (Aβ) deposition, a hallmark of Alzheimers disease (AD) pathology and whether there are parent-of-origin effects. Forty-two 50- to 80-year-old NL persons were examined with PiB-PET. These individuals included 14 NL subjects with a maternal family history (FH) of LOAD (FHm), 14 NL subjects with a paternal FH (FHp), and 14 NL subjects with a negative family history of any dementia (FH−). Statistical parametric mapping and automated regions-of-interest were used to compare cerebral-to-cerebellar PiB standardized uptake value ratios, reflecting fibrillar Aβ burden, across groups. FH groups did not differ in age, gender, education, and apolipoprotein E (ApoE) status. NL FHm subjects showed higher PiB retention in AD-affected anterior and posterior cingulate cortex (PCC), precuneus, parietal, temporal, occipital, and frontal cortices, right basal ganglia, and thalamus, compared with FH− and FHp subjects. FHp subjects showed increased PiB retention in the PCC and frontal cortex, intermediate between FHm and FH− subjects. Results remained significant after controlling for age, gender, education, and ApoE status. Children of parents with LOAD, particularly those with affected mothers, have increased fibrillar Aβ load in AD-vulnerable regions compared with controls, perhaps accounting for the known increased risk for AD. Present findings may motivate further research on familial transmission and parent-of-origin effects in LOAD.


Journal of Nutrition Health & Aging | 2015

NUTRIENT PATTERNS AND BRAIN BIOMARKERS OF ALZHEIMER’S DISEASE IN COGNITIVELY NORMAL INDIVIDUALS

Valentina Berti; John D. Murray; Michelle Davies; Nicole Spector; W. Tsui; Yi Li; Schantel Williams; Elizabeth Pirraglia; Shankar Vallabhajosula; Pauline McHugh; Alberto Pupi; M. J. de Leon; Lisa Mosconi

ObjectivesEpidemiological evidence linking diet, one of the most important modifiable lifestyle factors, and risk of Alzheimer’s disease (AD) is rapidly increasing. However, there is little or no evidence for a direct association between dietary nutrients and brain biomarkers of AD. This study identifies nutrient patterns associated with major brain AD biomarkers in a cohort of clinically and cognitively normal (NL) individuals at risk for AD.DesignCross-sectional study.SettingManhattan (broader area).ParticipantsFifty-two NL individuals (age 54+12 y, 70% women, Clinical Dementia Rating=0, MMSE>27, neuropsychological test performance within norms by age and education) with complete dietary information and cross-sectional, 3D T1-weighted Magnetic Resonance Imaging (MRI; gray matter volumes, GMV, a marker of brain atrophy), 11CPittsburgh compound-B (PiB; a marker of fibrillar amyloid-β, Aβ) and 18F-fluorodeoxyglucose (FDG; a marker of glucose metabolism, METglc) Positron Emission Tomography (PET) scans were examined.MeasurementsDietary intake of 35 nutrients associated with cognitive function and AD was assessed using the Harvard/Willet Food Frequency Questionnaire. Principal component analysis was used to generate nutrient patterns (NP) from the full nutrient panel. Statistical parametric mapping and voxel based morphometry were used to assess the associations of the identified NPs with AD biomarkers.ResultsNone of the participants were diabetics, smokers, or met criteria for obesity. Five NPs were identified: NP1 was characterized by most B-vitamins and several minerals [VitB&Minerals]; NP2 by monounsaturated and polyunsaturated fats, including ω-3 and ω-6 PUFA, and vitamin E [VitE&PUFA]; NP3 by vitamin A, vitamin C, carotenoids and dietary fibers [Antioxidants&Fibers]; NP4 by vitamin B12, vitamin D and zinc [VitB12&D]; NP5 by saturated, trans-saturated fats, cholesterol and sodium [Fats]. Voxel-based analysis showed that NP4 scores [VitB12&D] were positively associated with METglc and GMV, and negatively associated with PiB retention in AD-vulnerable regions (p<0.001). In addition, both METglc and GMV were positively associated with NP2 scores [VitE&PUFA], and negatively associated with NP5 scores [Fats] (p<0.001), and METglc was positively associated with higher NP3 scores [Anti-oxidants&Fibers] (p<0.001). Adjusting for age, gender, ethnicity, education, caloric intake, BMI, alcohol consumption, family history and Apolipoprotein E (APOE) status did not attenuate these relationships. The identified ‘AD-protective’ nutrient combination was associated with higher intake of fresh fruit and vegetables, whole grains, fish and low-fat dairies, and lower intake of sweets, fried potatoes, high-fat dairies, processed meat and butter.ConclusionSpecific dietary NPs are associated with brain biomarkers of AD in NL individuals, suggesting that dietary interventions may play a role in the prevention of AD by modulating AD-risk through its effects on Aβ and associated neuronal impairment.


Human Genomics | 2010

Maternal transmission of Alzheimer's disease: Prodromal metabolic phenotype and the search for genes

Lisa Mosconi; Valentina Berti; Russell H. Swerdlow; Alberto Pupi; Ranjan Duara; Mony J. de Leon

After advanced age, having a parent affected with Alzheimers disease (AD) is the most significant risk factor for developing AD among cognitively normal (NL) individuals. Although rare genetic mutations have been identified among the early-onset forms of familial AD (EOFAD), the genetics of the more common forms of late-onset AD (LOAD) remain elusive. While some LOAD cases appear to be sporadic in nature, genetically mediated risk is evident from the familial aggregation of many LOAD cases. The patterns of transmission and biological mechanisms through which a family history of LOAD confers risk to the offspring are not known. Brain imaging studies using 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) have shown that NL individuals with a maternal history of LOAD, but not with a paternal family history, express a phenotype characterised by a pattern of progressive reductions of brain glucose metabolism, similar to that in AD patients. As maternally inherited AD may be associated with as many as 20 per cent of the total LOAD population, understanding the causes and mechanisms of expression of this form of AD is of great relevance. This paper reviews known genetic mutations implicated in EOFAD and their effects on brain chemistry, structure and function; epidemiology and clinical research findings in LOAD, including in vivo imaging findings showing selective patterns of hypometabolism in maternally inherited AD; possible genetic mechanisms involved in maternal transmission of AD, including chromosome X mutations, mitochondrial DNA and imprinting; and genetic mechanisms involved in other neurological disorders with known or suspected maternal inheritance. The review concludes with a discussion of the potential role of brain imaging for identifying endophenotypes in NL individuals at risk for AD, and for directing investigation of potential susceptibility genes for AD.


Neurobiology of Aging | 2012

Interaction of caudate dopamine depletion and brain metabolic changes with cognitive dysfunction in early Parkinson's disease

Cristina Polito; Valentina Berti; Silvia Ramat; Eleonora Vanzi; Maria Teresa De Cristofaro; Giannantonio Pellicanò; Francesco Mungai; P. Marini; Andreas Robert Formiconi; Sandro Sorbi; Alberto Pupi

Damage to nonmotor dopamine (DA)-mediated frontostriatal circuits has been proposed as the main pathophysiological basis of cognitive dysfunction in Parkinsons disease (PD). In the present study, 18 early nondemented drug naive PD patients were investigated, by dual-tracer N-ω-fluoropropyl-2β-carbomethoxy-3β-4-[123I]iodophenyl-nortropane ([123I]FP-CIT) single-photon emission computed tomography (SPECT)/[18F] fluoro-deoxyglucose (FDG) positron emission tomography (PET) imaging, to test whether an early and not yet treatment-modulated relation exists between cognitive functions, caudate nucleus (CN) DA impairment and brain metabolism (CMRglc) in associative frontostriatal circuits. Verbal fluency performance correlated with DA impairment in CN, and with CMRglc in dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). Further, CMRglc in orbitofrontal cortex, DLPFC, and ACC was shown to be early modulated by the level of DA impairment in CN. The present study demonstrates in vivo the early functional disruption of nonmotor frontostriatal circuits in PD. The effect of CN DA impairment on DLPFC and ACC metabolism is proposed as a possible early pathophysiological and functional substrate for executive dysfunction in PD.


Annals of the New York Academy of Sciences | 2011

PET/CT in diagnosis of dementia

Valentina Berti; Alberto Pupi; Lisa Mosconi

Clinical use of positron emission tomography (PET) is now well established in neurodegenerative disorders, especially in the diagnosis of dementia. Measurement of cerebral glucose metabolism is of significant value, and it facilitates early diagnosis, appropriate differential diagnosis, and the evaluation of drug treatment in patients with dementia. In addition, tracers offer new perspectives for studying the neuropathology of underlying dementia, such as the accumulation of amyloid proteins, tau‐proteins, or the presence of neuroinflammation. Finally, PET tracer studies of different neurotransmitter systems in dementia may not only increase the understanding of pathophysiologic mechanisms of the different disorders, but also improve diagnostic accuracy. In conclusion, PET imaging with different tracers offers reliable biomarkers in dementia, which can assist clinicians in the diagnosis of different dementing disorders, especially in the situation of overlapping phenotypes.


Neurodegenerative Diseases | 2010

Early Detection of Alzheimer's Disease with PET Imaging

Valentina Berti; Ricardo S. Osorio; Lisa Mosconi; Yi Li; S. De Santi; M. J. de Leon

Preclinical diagnosis of Alzheimer’s disease (AD) is one of the major challenges for the prevention of AD. AD biomarkers are needed not only to reveal preclinical pathologic changes, but also to monitor progression and therapeutics. PET neuroimaging can reliably assess aspects of the molecular biology and neuropathology of AD. The aim of this article is to review the use of FDG-PET and amyloid PET imaging in the early detection of AD.


Neurobiology of Aging | 2011

Structural brain changes in normal individuals with a maternal history of Alzheimer's

Valentina Berti; Lisa Mosconi; Lidia Glodzik; Yi Li; John D. Murray; Susan De Santi; Alberto Pupi; Wai Tsui; Mony J. de Leon

Having a parent affected with late-onset Alzheimers disease (LOAD) is a major risk factor for developing the disease among cognitively normal (NL) individuals. This magnetic resonance imaging (MRI) study examines whether NL with a LOAD-affected parent show preclinical brain atrophy, and whether there are parent-of-origin effects. Voxel-based morphometry (VBM) on Statistical parametric mapping (SPM8) was used to examine volumetric T1-MRI scans of 60 late-middle-aged NL subjects, divided into 3 size-matched, demographically balanced groups of 20 subjects each, including NL with a maternal (FHm), paternal (FHp), or negative family history (FH-) of LOAD. There were no group differences for clinical and neuropsychological measures, and ApoE status. On VBM, FHm showed reduced gray matter volumes (GMV) in frontal, parietal, and temporal cortices and precuneus as compared with FH-, and in precuneus compared with FHp (p < 0.05, family-wise error [FWE]-corrected). Results remained significant controlling for age, gender, education, ApoE, and total intracranial volume. No differences were observed between FHp and FH- in any regions. NL FHm showed reduced GMV in LOAD-affected brain regions compared with FH- and FHp, indicating higher risk for Alzheimers disease. Our findings support the use of regional brain atrophy as a preclinical biomarker for LOAD among at-risk individuals.


Annals of the New York Academy of Sciences | 2011

PET/CT in diagnosis of movement disorders.

Valentina Berti; Alberto Pupi; Lisa Mosconi

Molecular imaging with PET offers a broad variety of tools supporting the diagnosis of movement disorders. The more widely applied PET imaging techniques have focused on the assessment of neurotransmitter systems, predominantly the pre‐ and postsynaptic dopaminergic system. Additionally, PET imaging with [18F]fluorodeoxyglucose has been extensively used to assess local synaptic activity in the resting state and to highlight local changes in brain metabolism accompanying changes in neural activity in movement disorders. PET imaging has provided us with diagnostic agents as well as tools for evaluation of novel therapeutics, and has served as a powerful means for revealing in vivo changes at different stages of movement disorders and within the course of an individual patients illness.


European Journal of Nuclear Medicine and Molecular Imaging | 2010

Brain metabolic correlates of dopaminergic degeneration in de novo idiopathic Parkinson’s disease

Valentina Berti; Cristina Polito; Silvia Ramat; Eleonora Vanzi; Maria Teresa De Cristofaro; Giannantonio Pellicanò; Francesco Mungai; P. Marini; Andreas Robert Formiconi; Sandro Sorbi; Alberto Pupi

PurposeThe aim of the present study was to evaluate the reciprocal relationships between motor impairment, dopaminergic dysfunction, and cerebral metabolism (rCMRglc) in de novo Parkinson’s disease (PD) patients.MethodsTwenty-six de novo untreated PD patients were scanned with 123I-FP-CIT SPECT and 18F-FDG PET. The dopaminergic impairment was measured with putaminal 123I-FP-CIT binding potential (BP), estimated with two different techniques: an iterative reconstruction algorithm (BPOSEM) and the least-squares (LS) method (BPLS). Statistical parametric mapping (SPM) multiple regression analyses were performed to determine the specific brain regions in which UPDRS III scores and putaminal BP values correlated with rCMRglc.ResultsThe SPM results showed a negative correlation between UPDRS III and rCMRglc in premotor cortex, and a positive correlation between BPOSEM and rCMRglc in premotor and dorsolateral prefrontal cortex, not surviving at multiple comparison correction. Instead, there was a positive significant correlation between putaminal BPLS and rCMRglc in premotor, dorsolateral prefrontal, anterior prefrontal, and orbitofrontal cortex (p < 0.05, corrected for multiple comparison).ConclusionsPutaminal BPLS is an efficient parameter for exploring the correlations between PD severity and rCMRglc cortical changes. The correlation between dopaminergic degeneration and rCMRglc in several prefrontal regions likely represents the cortical functional correlate of the dysfunction in the motor basal ganglia-cortical circuit in PD. This finding suggests focusing on the metabolic course of these areas to follow PD progression and to analyze treatment effects.

Collaboration


Dive into the Valentina Berti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge