Valentina Cecarini
University of Camerino
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valentina Cecarini.
Neurochemical Research | 2006
Qunxing Ding; William R. Markesbery; Valentina Cecarini; Jeffrey N. Keller
All cells rely on efficient protein synthesis in order to maintain cellular homeostasis. Recent studies from our laboratory indicate that declines in protein synthesis and ribosome function occur in the earliest stage of Alzheimer’s disease (AD). Additional studies indicate a potential role for ribosomal RNA oxidation as a potential mediator of decreased protein synthesis in AD. The ribosome is a complex of proteins and nucleic acids that mediates all protein synthesis. At present it is unclear if significant alterations in ribosomal RNA occurs within the ribosome complex during the progression of AD. In this study we examined the amount of ribosomal RNA in the different ribosomal fractions generated from control subjects, individuals with mild cognitive impairment (MCI), and individuals with AD. Studies were conducted in the inferior parietal lobule of each subject. Together, these data demonstrate that during the progression of AD there is a gross decline in the amount of ribosomal RNA within the ribosome complex. Additionally, these studies provide evidence for gross elevations in RNA oxidation within the ribosome complex of MCI and AD. Together, these data strongly suggest a role for RNA alterations within the ribosome as a mediator of decreased protein synthesis in both MCI and AD.
Free Radical Research | 2007
Valentina Cecarini; Qunxing Ding; Jeffrey N. Keller
In the present study we isolated proteasome complexes from control, mild cognitive impairment (MCI), and Alzheimers disease (AD) subjects. No significant difference in the amount of proteasomes was detected across the different groups, although impairments in chymotrypsin-like proteasome activity was observed in AD subjects. Large impairments in proteasome- mediated degradation of an oxidized protein substrate was observed in MCI and AD subjects. Incubation with a reducing agent (DTT) had no significant effect on proteasome chymotrypsin-like activity, but fully restored proteasome-mediated protein degradation in MCI and AD subjects. Proteasomes from AD subjects exhibited elevations in protein carbonyls, 4-hydroxynonenal-conjugation, and neuroprostane-conjugation. Together, these data confirm that impairments in the function of purified proteasomes occurs in the earliest stages of AD, and directly support a role for oxidative inactivation contributing to declines in proteasome function in AD.
FEBS Journal | 2008
Laura Bonfili; Valentina Cecarini; Manila Amici; Massimiliano Cuccioloni; Mauro Angeletti; Jeffrey N. Keller; Anna Maria Eleuteri
The purpose of this review is to discuss the effect of natural antioxidant compounds as modulators of the 20S proteasome, a multi‐enzymatic multi‐catalytic complex present in the cytoplasm and nucleus of eukaryotic cells and involved in several cellular activities such as cell‐cycle progression, proliferation and the degradation of oxidized and damaged proteins. From this perspective, proteasome inhibition is a promising approach to anticancer therapy and such natural antioxidant effectors can be considered as potential relevant adjuvants and pharmacological models in the study of new drugs.
Journal of Medicinal Chemistry | 2014
Riccardo Pettinari; Claudio Pettinari; Fabio Marchetti; Brian W. Skelton; Allan H. White; Laura Bonfili; Massimiliano Cuccioloni; Matteo Mozzicafreddo; Valentina Cecarini; Mauro Angeletti; Massimo Nabissi; Anna Maria Eleuteri
A series of ruthenium(II) arene complexes with the 4-(biphenyl-4-carbonyl)-3-methyl-1-phenyl-5-pyrazolonate ligand, and related 1,3,5-triaza-7-phosphaadamantane (PTA) derivatives, has been synthesized. The compounds have been characterized by NMR and IR spectroscopy, ESI mass spectrometry, elemental analysis, and X-ray crystallography. Antiproliferative activity in four human cancer cell lines was determined by MTT assay, yielding dose- and cancer cell line-dependent IC50 values of 9-34 μM for three hexamethylbenzene-ruthenium complexes, whereas the other metal complexes were much less active. Apoptosis was the mechanism involved in the anticancer activity of such compounds. In fact, the hexamethylbenzene-ruthenium complexes activated caspase activity, with consequent DNA fragmentation, accumulation of pro-apoptotic proteins (p27, p53, p89 PARP fragments), and the concomitant down-regulation of antiapoptotic protein Bcl-2. Biosensor-based binding studies indicated that the ancillary ligands were critical in determining the DNA binding affinities, and competition binding experiments further characterized the nature of the interaction.
Biochimica et Biophysica Acta | 2012
Valentina Cecarini; Laura Bonfili; Massimiliano Cuccioloni; Matteo Mozzicafreddo; Giacomo Rossi; Laura Buizza; Daniela Uberti; Mauro Angeletti; Anna Maria Eleuteri
Alzheimers disease is the most common progressive neurodegenerative disorder characterized by the abnormal deposition of amyloid plaques, likely as a consequence of an incorrect processing of the amyloid-β precursor protein (AβPP). Dysfunctions in both the ubiquitin-proteasome system and autophagy have also been observed. Recently, an extensive cross-talk between these two degradation pathways has emerged, but the exact implicated processes are yet to be clarified. In this work, we gained insight into such interplay by analyzing human SH-SY5Y neuroblastoma cells stably transfected either with wild-type AβPP gene or 717 valine-to-glycine AβPP-mutated gene. The over-expression of the AβPP mutant isoform correlates with an increase in oxidative stress and a remodeled pattern of protein degradation, with both marked inhibition of proteasome activities and impairment in the autophagic flux. To compensate for this altered scenario, cells try to promote the autophagy activation in a HDAC6-dependent manner. The treatment with amyloid-β(42) oligomers further compromises proteasome activity and also contributes to the inhibition of cathepsin-mediated proteolysis, finally favoring the neuronal degeneration and suggesting the existence of an Aβ(42) threshold level beyond which proteasome-dependent proteolysis becomes definitely dysfunctional.
ChemMedChem | 2012
Laura Bonfili; Riccardo Pettinari; Massimiliano Cuccioloni; Valentina Cecarini; Matteo Mozzicafreddo; Mauro Angeletti; Giulio Lupidi; Fabio Marchetti; Claudio Pettinari; Anna Maria Eleuteri
Organometallic ruthenium(II) complexes of general formula [(η6‐arene)Ru(curcuminato)Cl], with arene being p‐iPrC6H4Me (1), C6H6 (2), and C6Me6 (3), were synthesized, characterized, and evaluated for their antitumor effects. Specifically, we explored their ability to regulate the proteasome, a validated pharmacological target in cancer treatment. Ruthenium complexes inhibited isolated proteasomes to various extents, with the biological activity of these complexes depending on the nature of the bound arene; in particular, [(η6‐arene)Ru(curcuminato)Cl] 2 suppressed proteasomal activities more potently than 1, 3, or free curcumin. Each complex also inhibited proteasomes in cultured colon cancer cells and consequently triggered apoptosis, with the [(η6‐benzene)Ru(curcuminato)Cl] complex 2 being the most active. The influence on the oxidative status of HCT116 cells and the DNA binding ability of the [(η6‐arene)Ru(curcuminato)Cl] complexes were studied. Complex 2 showed the highest antioxidant capacity; moreover, complexes 1 and 2 were shown to bind isolated DNA with higher affinity (up to threefold) than free curcumin. Collectively, our results demonstrate that the complexation of curcumin with ruthenium(II) is a promising starting point for the development of curcumin‐based anticancer drugs.
FEBS Journal | 2010
Valentina Cecarini; Luana Quassinti; Alessia Di Blasio; Laura Bonfili; Massimo Bramucci; Giulio Lupidi; Massimiliano Cuccioloni; Matteo Mozzicafreddo; Mauro Angeletti; Anna Maria Eleuteri
Thymoquinone, a naturally derived agent, has been shown to possess antioxidant, antiproliferative and proapoptotic activities. In the present study, we explored thymoquinone effects on the proteasomal complex, the major system involved in the removal of damaged, oxidized and misfolded proteins. In purified 20S complexes, subunit‐dependent and composition‐dependent inhibition was observed, and the chymotrypsin‐like and trypsin‐like activities were the most susceptible to thymoquinone treatment. U87 MG and T98G malignant glioma cells were treated with thymoquinone, and 20S and 26S proteasome activity was measured. Inhibition of the complex was evident in both cell lines, but predominantly in U87 MG cells, and was accompanied by accumulation of ubiquitin conjugates. Accumulation of p53 and Bax, two proteasome substrates with proapoptotic activity, was observed in both cell lines. Our results demonstrate that thymoquinone induces selective and time‐dependent proteasome inhibition, both in isolated enzymes and in glioblastoma cells, and suggest that this mechanism could be implicated in the induction of apoptosis in cancer cells.
Journal of Chemical Information and Modeling | 2009
Matteo Mozzicafreddo; Massimiliano Cuccioloni; Valentina Cecarini; Anna Maria Eleuteri; Mauro Angeletti
Molecular docking of small ligands to biologically active macromolecules has become a valuable strategy to predict the stability of complexes between potential partners and their binding modes. In this perspective, we applied this computational procedure to rationalize the reported role of polyphenols as inhibitors of the mammalian 20S proteasomes. In particular, polyphenols were shown to modulate each proteasomal activity at different extents both in the constitutive and the inducible enzyme. We performed a flexible molecular docking analysis between a set of polyphenols previously demonstrated to have the highest binding affinity and both the constitutive (from deposited PDB structures) and homology modeled active subunits of the IFN-gamma inducible proteasome, to provide insight into the possible mechanism of interaction. Among the tested polyphenols, (-)-epigallocatechin-3-gallate showed the highest affinity for the proteasome subunits, both in terms of intermolecular energy and predicted equilibrium constants, in particular for beta5 and beta5i subunits (E(total) = -66 kcal/mol, Ki = 81.3 microM and E(Total) = -83.9 kcal/mol, Ki = 0.29 microM, respectively), known to be related to the chymotrypsin-like and BrAAP activities. Collectively, polyphenols showed a higher affinity for the inducible subunits, in agreement with previous in vitro studies. Additionally, different contributions to the interaction energy (van der Waals, electrostatic, H-bond) of proteasome-polyphenols complexes were dissected.
Biochimie | 2008
Manila Amici; Laura Bonfili; Michele Spina; Valentina Cecarini; Isabella Calzuola; Valeria Marsili; Mauro Angeletti; Evandro Fioretti; Rosalia Tacconi; Gian Luigi Gianfranceschi; Anna Maria Eleuteri
Wheat sprouts contain a very high level of organic phosphates and a powerful cocktail of different molecules such as enzymes, reducing glycosides and polyphenols. The antioxidant properties of wheat sprouts have been widely documented and it has been shown that they are able to protect DNA against free-radicals mediated oxidative damage. Furthermore, we have recently reported on the effects of several polyphenols on 20S proteasomes, underlying the dual role of epigallocatechin-3-gallate as an antioxidant and a proteasome effector in cancer cells. The aim of this study was to investigate the effects of wheat sprout extracts on 20S proteasome functionality. Wheat sprout extracts have been analysed and characterized for their polyphenolic content using the Folin-Ciocalteau reagent and RP-HPLC technique. Comparing our data with a polyphenol standard mixture we identified five different polyphenols: gallic acid, epigallocatechin-3-gallate, epigallocatechin, epicatechin and catechin. The treatment of isolated 20S proteasomes with the extract induced a gradual inhibition of all the tested components, ChT-L, T-L, PGPH and BrAAP, in both the complexes. At low extract concentration a slight activation of the enzyme was evident only for the BrAAP component of the constitutive enzyme and the ChT-L activity of the immunoproteasome. beta-casein degradation rate decreased, particularly with the immunoproteasome. Human Colon adenocarcinoma (Caco) cells, stimulated with 12-O-tetradecanoylphorbol-13-acetate, showed activation of the 20S proteasome activities at short incubation times and an increase in intracellular oxidative proteins. Cells treatment with wheat sprout extract led to proteasome inhibition in unstimulated cells and attenuated the effects mediated by TPA. Finally, exposure to the extract affected the expression levels of pro-apoptotic proteins.
Brain Research | 2008
Valentina Cecarini; Laura Bonfili; Manila Amici; Mauro Angeletti; Jeffrey N. Keller; Anna Maria Eleuteri
The role of amyloid-beta protein (Abeta) in the pathogenesis of Alzheimers disease (AD) has been widely investigated and amyloid aggregates are considered a major cause of neuronal dysfunction. Increasing evidence has identified a correlation between this protein and the proteasome, the cellular proteolytic machinery, in particular the ubiquitin-proteasome system. The 20S proteasome is the catalytic core of a complex, known as 26S proteasome, and is the main responsible for the clearance of misfolded and oxidized proteins. In this work we have investigated the effects of different assembly states of two major amyloid peptides, Abeta (1-40) and Abeta (1-42) on the 20S proteasome functionality and on the ubiquitin-dependent pathway of protein degradation. In particular, we have tested proteasome activities after Abeta treatment on purified 20S complexes and on lysates of a human neuroblastoma cell line. Our findings show a significant decrease in proteasome activity, more evident in cell lysates than in isolated complexes, and an increased amount of ubiquitin-protein conjugates and of a known proteasome substrate (p27). Furthermore, the altered proteasome functionality is not associated with a decrease in cell viability, but is linked with increased levels of protein oxidation.