Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentina De Chiara is active.

Publication


Featured researches published by Valentina De Chiara.


Nature Neuroscience | 2008

Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum

Mauro Maccarrone; Silvia Rossi; Monica Bari; Valentina De Chiara; Filomena Fezza; Alessandra Musella; Valeria Gasperi; Chiara Prosperetti; Giorgio Bernardi; Alessandro Finazzi-Agrò; Benjamin F. Cravatt; Diego Centonze

Of the endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG) have received the most study. A functional interaction between these molecules has never been described. Using mouse brain slices, we found that stimulation of metabotropic glutamate 5 receptors by 3,5-dihydroxyphenylglycine (DHPG) depressed inhibitory transmission in the striatum through selective involvement of 2-AG metabolism and stimulation of presynaptic CB1 receptors. Elevation of AEA concentrations by pharmacological or genetic inhibition of AEA degradation reduced the levels, metabolism and physiological effects of 2-AG. Exogenous AEA and the stable AEA analog methanandamide inhibited basal and DHPG-stimulated 2-AG production, confirming that AEA is responsible for the downregulation of the other eCB. AEA is an endovanilloid substance, and the stimulation of transient receptor potential vanilloid 1 (TRPV1) channels mimicked the effects of endogenous AEA on 2-AG metabolism through a previously unknown glutathione-dependent pathway. Consistently, the interaction between AEA and 2-AG was lost after pharmacological and genetic inactivation of TRPV1 channels.


The Journal of Neuroscience | 2009

Inflammation Triggers Synaptic Alteration and Degeneration in Experimental Autoimmune Encephalomyelitis

Diego Centonze; Luca Muzio; Silvia Rossi; Francesca Cavasinni; Valentina De Chiara; Alessandra Bergami; Alessandra Musella; Marcello D'Amelio; Virve Cavallucci; Alessandro Martorana; Andrea Bergamaschi; Maria Teresa Cencioni; Adamo Diamantini; Erica Butti; Giancarlo Comi; Giorgio Bernardi; Francesco Cecconi; Luca Battistini; Roberto Furlan; Gianvito Martino

Neurodegeneration is the irremediable pathological event occurring during chronic inflammatory diseases of the CNS. Here we show that, in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, inflammation is capable in enhancing glutamate transmission in the striatum and in promoting synaptic degeneration and dendritic spine loss. These alterations occur early in the disease course, are independent of demyelination, and are strongly associated with massive release of tumor necrosis factor-α from activated microglia. CNS invasion by myelin-specific blood-borne immune cells is the triggering event, and the downregulation of the early gene Arc/Arg3.1, leading to the abnormal expression and phosphorylation of AMPA receptors, represents a culminating step in this cascade of neurodegenerative events. Accordingly, EAE-induced synaptopathy subsided during pharmacological blockade of AMPA receptors. Our data establish a link between neuroinflammation and synaptic degeneration and calls for early neuroprotective therapies in chronic inflammatory diseases of the CNS.


Biological Psychiatry | 2008

Abnormal Striatal GABA Transmission in the Mouse Model for the Fragile X Syndrome

Diego Centonze; Silvia Rossi; Valentina Mercaldo; Ilaria Napoli; Maria Teresa Ciotti; Valentina De Chiara; Alessandra Musella; Chiara Prosperetti; Paolo Calabresi; Giorgio Bernardi; Claudia Bagni

BACKGROUND Structural and functional neuroimaging studies suggest abnormal activity in the striatum of patients with the fragile X syndrome (FXS), the most common form of inherited mental retardation. METHODS Neurophysiological and immunofluorescence experiments in striatal brain slices. We studied the synaptic transmission in a mouse model for FXS, as well as the subcellular localization of fragile X mental retardation protein (FMRP) and brain cytoplasmic (BC1) RNA in striatal axons. RESULTS Our results show that absence of FMRP is associated with apparently normal striatal glutamate-mediated transmission, but abnormal gamma-aminobutyric acid (GABA) transmission. This effect is likely secondary to increased transmitter release from GABAergic nerve terminals. We detected the presence of FMRP in axons of striatal neurons and observed a selective increase in the frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs, mIPSCs) in fmr1-knockout mice. We also observed reduced paired-pulse ratio of evoked IPSCs, a finding that is consistent with the idea that transmitter release probability from striatal GABAergic nerve terminals is higher than normal in these mutants. Finally, we have identified the small noncoding BC1 RNA as a critical coplayer of FMRP in the regulation of striatal synaptic transmission. CONCLUSIONS Understanding the physiologic action of FMRP and the synaptic defects associated with GABA transmission might be useful to design appropriate pharmacologic interventions for FXS.


Annals of Neurology | 2012

Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis.

Silvia Rossi; Roberto Furlan; Valentina De Chiara; Caterina Motta; Valeria Studer; Francesco Mori; Alessandra Musella; Alessandra Bergami; Luca Muzio; Giorgio Bernardi; Luca Battistini; Gianvito Martino; Diego Centonze

The frequency of inflammatory episodes in the early stages of multiple sclerosis (MS) has been correlated with late neurodegeneration, but the mechanism by which inflammation gives rise to delayed neuronal damage is unknown. Increased activity of the neurotransmitter glutamate is thought to play a role in the inflammation‐driven neurodegenerative process of MS, and therefore we tested whether inflammatory cytokines released during acute MS attacks have the property of enhancing glutamate‐mediated transmission and excitotoxicity in central neurons.


Molecular and Cellular Neuroscience | 2009

TRPV1 channels facilitate glutamate transmission in the striatum.

Alessandra Musella; Valentina De Chiara; Silvia Rossi; Chiara Prosperetti; Giorgio Bernardi; Mauro Maccarrone; Diego Centonze

Transient receptor potential vanilloid 1 (TRPV1) channels participate in the modulation of synaptic transmission in the periphery and in central structures. Here, we investigated the role of TRPV1 channels in the control of both excitatory and inhibitory transmission in the striatum. Pharmacological stimulation of TRPV1 channels with capsaicin (10 nM) selectively enhanced the frequency of glutamate-mediated spontaneous (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) recorded from putative striatal medium spiny neurons. Capsaicin-mediated response underwent a rapid rundown, and was no longer detected in the majority of the neurons when the concentration of the drug was in the micromolar range, possibly due to receptor desensitization. Consistently, the totality of striatal neurons responded to capsaicin (10 nM or 10 microM) after prevention of desensitization of TRPV1 channels with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA). PMA was able per se to increase sEPSC frequency. The effects of capsaicin and of PMA were absent after pharmacological or genetic inactivation of TRPV1 channels. Finally, we provided evidence for anandamide as an endovanilloid substance in the striatum, since genetic inhibition of anandamide degradation resulted in a tonic activation of TRPV1 channels modulating glutamate but not GABA release. TRPV1-mediated regulation of excitatory transmission in the striatum might be important for the final output to other basal ganglia structures, and might play a role in several physiological and pathological processes.


The Journal of Neuroscience | 2008

Chronic Psychoemotional Stress Impairs Cannabinoid-Receptor-Mediated Control of GABA Transmission in the Striatum

Silvia Rossi; Valentina De Chiara; Alessandra Musella; Hajime Kusayanagi; Giorgia Mataluni; Giorgio Bernardi; Alessandro Usiello; Diego Centonze

Exposure to stressful events has a myriad of consequences in animals and in humans, and triggers synaptic adaptations in many brain areas. Stress might also alter cannabinoid-receptor-mediated transmission in the brain, but no physiological study has addressed this issue so far. In the present study, we found that social defeat stress, induced in mice by exposure to aggression, altered cannabinoid CB1-receptor-mediated control of synaptic transmission in the striatum. In fact, the presynaptic inhibition of GABAergic IPSCs induced by the cannabinoid CB1 receptor agonist HU210 [(6a R )-trans-3-(1,1-dimethylheptyl)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol] was reduced after a single stressful episode and fully abolished after 3 and 7 d of stress exposure. Repeated psychoemotional stress also impaired the sensitivity of GABA synapses to endocannabinoids mobilized by group I metabotropic glutamate receptor stimulation, whereas the cannabinoid CB1-mediated control of glutamate transmission was unaffected by repeated exposure to an aggressor. Corticosteroids released in response to the activation of the hypothalamic–pituitary–adrenal axis played a major role in the synaptic defects observed in stressed animals, because these alterations were fully prevented by pharmacological blockade of glucocorticoid receptors and were mimicked by corticosterone injections. The recovery of stress-induced synaptic defects was favored when stressed mice were given access to a running wheel or to sucrose consumption, which function as potent natural rewards. A similar rescuing effect was obtained by a single injection of cocaine, a psychostimulant with strong rewarding properties. Targeting cannabinoid CB1 receptors or endocannabinoid metabolism might be a valuable option to treat stress-associated neuropsychiatric conditions.


Brain Behavior and Immunity | 2011

Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis.

Silvia Rossi; Luca Muzio; Valentina De Chiara; Giorgio Grasselli; Alessandra Musella; Gabriele Musumeci; Georgia Mandolesi; Roberta De Ceglia; Simona Maida; Emilia Biffi; Alessandra Pedrocchi; Andrea Menegon; Giorgio Bernardi; Roberto Furlan; Gianvito Martino; Diego Centonze

Synaptic dysfunction triggers neuronal damage in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). While excessive glutamate signaling has been reported in the striatum of EAE, it is still uncertain whether GABA synapses are altered. Electrophysiological recordings showed a reduction of spontaneous GABAergic synaptic currents (sIPSCs) recorded from striatal projection neurons of mice with MOG((35-55))-induced EAE. GABAergic sIPSC deficits started in the acute phase of the disease (20-25days post immunization, dpi), and were exacerbated at later time-points (35, 50, 70 and 90dpi). Of note, in slices they were independent of microglial activation and of release of TNF-α. Indeed, sIPSC inhibition likely involved synaptic inputs arising from GABAergic interneurons, because EAE preferentially reduced sIPSCs of high amplitude, and was associated with a selective loss of striatal parvalbumin (PV)-positive GABAergic interneurons, which contact striatal projection neurons in their somatic region, giving rise to more efficient synaptic inhibition. Furthermore, we found also that the chronic persistence of pro-inflammatory cytokines were able, per se, to produce profound alterations of electrophysiological network properties, that were reverted by GABA administration. The results of the present investigation indicate defective GABA transmission in MS models depending from alteration of PV cells number and, in part, deriving from the effects of a chronic inflammation, and suggest that pharmacological agents potentiating GABA signaling might be considered to limit neuronal damage in MS patients.


Neurobiology of Disease | 2009

Exercise attenuates the clinical, synaptic and dendritic abnormalities of experimental autoimmune encephalomyelitis.

Silvia Rossi; Roberto Furlan; Valentina De Chiara; Alessandra Musella; Temistocle Lo Giudice; Giorgia Mataluni; Francesca Cavasinni; Cristina Cantarella; Giorgio Bernardi; Luca Muzio; Alessandro Martorana; Gianvito Martino; Diego Centonze

Voluntary exercise is beneficial in models of primarily neurodegenerative disorders. Whether exercise also affects inflammatory neurodegeneration is unknown. In the present study, we evaluated the clinical, synaptic and neuropathological effects of voluntary wheel running in mice with myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Exercising EAE mice exhibited less severe neurological deficits compared to control EAE animals. The sensitivity of striatal GABA synapses to the stimulation of cannabinoid CB1 receptors was dramatically downregulated following EAE induction, and was rescued by exercise in EAE mice with access to a running wheel. Finally, we found that exercise was able to contrast dendritic spine loss induced by EAE in striatal neurons, although the degree of inflammatory response was similar in the two experimental groups. Our work suggests that life style and experiences can impact the clinical course of inflammatory neurodegenerative diseases by affecting their synaptic bases.


Neuropsychopharmacology | 2010

Abnormal mGlu 5 Receptor/Endocannabinoid Coupling in Mice Lacking FMRP and BC1 RNA

Mauro Maccarrone; Silvia Rossi; Monica Bari; Valentina De Chiara; Cinzia Rapino; Alessandra Musella; Giorgio Bernardi; Claudia Bagni; Diego Centonze

Transcriptional silencing of the gene encoding the fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS). FMRP acts as a translational repressor at central synapses, and molecular and synaptic plasticity studies have shown that the absence of this protein alters metabotropic glutamate 5 receptors (mGlu5Rs)-mediated signaling. In the striatum of mice lacking FMRP, we found enhanced activity of diacylglycerol lipase (DAGL), the enzyme limiting 2-arachidonoylglicerol (2-AG) synthesis, associated with altered sensitivity of GABA synapses to the mobilization of this endocannabinoid by mGlu5R stimulation with DHPG. Mice lacking another repressor of synaptic protein synthesis, BC1 RNA, also showed potentiated mGlu5R-driven 2-AG responses, indicating that both FMRP and BC1 RNA act as physiological constraints of mGlu5R/endocannabinoid coupling at central synapses. The effects of FMRP ablation on DAGL activity and on DHPG-mediated inhibition of GABA synapses were enhanced by simultaneous genetic inactivation of FMRP and BC1 RNA. In double FMRP and BC1 RNA lacking mice, striatal levels of 2-AG were also enhanced compared with control animals and to single mutants. Our data indicate for the first time that mGlu5R-driven endocannabinoid signaling in the striatum is under the control of both FMRP and BC1 RNA. The abnormal mGlu5R/2-AG coupling found in FMRP-KO mice emphasizes the involvement of mGlu5Rs in the synaptic defects of FXS, and identifies the modulation of the endocannabinoid system as a novel target for the treatment of this severe neuropsychiatric disorder.


Neuropsychopharmacology | 2010

Voluntary exercise and sucrose consumption enhance cannabinoid CB1 receptor sensitivity in the striatum.

Valentina De Chiara; Francesco d’Errico; Alessandra Musella; Silvia Rossi; Giorgia Mataluni; Lucia Sacchetti; Alberto Siracusano; Maura Castelli; Francesca Cavasinni; Giorgio Bernardi; Alessandro Usiello; Diego Centonze

The endogenous cannabinoid system is involved in the regulation of the central reward pathway. Running wheel and sucrose consumption have rewarding and reinforcing properties in rodents, and share many neurochemical and behavioral characteristics with drug addiction. In this study, we investigated whether running wheel or sucrose consumption altered the sensitivity of striatal synapses to the activation of cannabinoid CB1 receptors. We found that cannabinoid CB1 receptor-mediated presynaptic control of striatal inhibitory postsynaptic currents was remarkably potentiated after these environmental manipulations. In contrast, the sensitivity of glutamate synapses to CB1 receptor stimulation was unaltered, as well as that of GABA synapses to the stimulation of presynaptic GABAB receptors. The sensitization of cannabinoid CB1 receptor-mediated responses was slowly reversible after the discontinuation of running wheel or sucrose consumption, and was also detectable following the mobilization of endocannabinoids by metabotropic glutamate receptor 5 stimulation. Finally, we found that the upregulation of cannabinoid transmission induced by wheel running or sucrose had a crucial role in the protective effects of these environmental manipulations against the motor and synaptic consequences of stress.

Collaboration


Dive into the Valentina De Chiara's collaboration.

Top Co-Authors

Avatar

Diego Centonze

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Silvia Rossi

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Giorgio Bernardi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Caterina Motta

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Mauro Maccarrone

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Valeria Studer

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Chiara Prosperetti

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alessandro Usiello

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Gianvito Martino

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Lucia Sacchetti

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge