Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentina De Falco is active.

Publication


Featured researches published by Valentina De Falco.


Journal of Clinical Investigation | 2005

The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells

Rosa Marina Melillo; Maria Domenica Castellone; Valentina Guarino; Valentina De Falco; Anna Maria Cirafici; Giuliana Salvatore; Fiorina Caiazzo; Fulvio Basolo; Riccardo Giannini; Mogens Kruhøffer; T F Ørntoft; Alfredo Fusco; Massimo Santoro

In papillary thyroid carcinomas (PTCs), rearrangements of the RET receptor (RET/PTC) and activating mutations in the BRAF or RAS oncogenes are mutually exclusive. Here we show that the 3 proteins function along a linear oncogenic signaling cascade in which RET/PTC induces RAS-dependent BRAF activation and RAS- and BRAF-dependent ERK activation. Adoptive activation of the RET/PTC-RAS-BRAF axis induced cell proliferation and Matrigel invasion of thyroid follicular cells. Gene expression profiling revealed that the 3 oncogenes activate a common transcriptional program in thyroid cells that includes upregulation of the CXCL1 and CXCL10 chemokines, which in turn stimulate proliferation and invasion. Thus, motile and mitogenic properties are intrinsic to transformed thyroid cells and are governed by an epistatic oncogenic signaling cascade.


Oncogene | 2004

Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas.

Maria Domenica Castellone; Valentina Guarino; Valentina De Falco; Francesca Carlomagno; Fulvio Basolo; Pinuccia Faviana; Mogens Kruhøffer; Torben F. Ørntoft; John P Russell; Jay L. Rothstein; Alfredo Fusco; Massimo Santoro; Rosa Marina Melillo

To identify genes involved in the transformation of thyroid follicular cells, we explored, using DNA oligonucleotide microarrays, the transcriptional response of PC Cl3 rat thyroid epithelial cells to the ectopic expression of the RET/PTC oncogenes. We found that RET/PTC was able to induce the expression of CXCR4, the receptor for the chemokine CXCL12/SDF-1α/β. We observed that CXCR4 expression correlated with the transforming ability of the oncoprotein and depended on the integrity of the RET/PTC–RAS/ERK signaling pathway. We found that CXCR4 was expressed in RET/PTC-positive human thyroid cancer cell lines, but not in normal thyroid cells. Furthermore, we found CXCR4 expression in human thyroid carcinomas, but not in normal thyroid samples by immunohistochemistry. Since CXCR4 has been recently implicated in tumor proliferation, motility and invasiveness, we asked whether treatment with SDF-1α was able to induce a biological response in thyroid cells. We observed that SDF-1α induced S-phase entry and survival of thyroid cells. Invasion through a reconstituted extracellular matrix was also supported by SDF-1α and inhibited by a blocking antibody to CXCR4. Taken together, these results suggest that human thyroid cancers bearing RET/PTC rearrangements may use the CXCR4/SDF-1α receptor–ligand pathway to proliferate, survive and migrate.


Cancer Research | 2007

Biological Role and Potential Therapeutic Targeting of the Chemokine Receptor CXCR4 in Undifferentiated Thyroid Cancer

Valentina De Falco; Valentina Guarino; Elvira Avilla; Maria Domenica Castellone; Paolo Salerno; Giuliana Salvatore; Pinuccia Faviana; Fulvio Basolo; Massimo Santoro; Rosa Marina Melillo

Anaplastic thyroid carcinoma (ATC) is a rare thyroid cancer type with an extremely poor prognosis. Despite appropriate treatment, which includes surgery, radiotherapy, and chemotherapy, this cancer is invariably fatal. CXCR4 is the receptor for the stromal cell-derived factor-1 (SDF-1)/CXCL12 chemokine and it is expressed in a variety of solid tumors, including papillary thyroid carcinoma. Here, we show that ATC cell lines overexpress CXCR4, both at the level of mRNA and protein. Furthermore, we found that CXCR4 was overexpressed in ATC clinical samples, with respect to normal thyroid tissues by real-time PCR and immunohistochemistry. Treatment of ATC cells with SDF-1 induced proliferation and increase in phosphorylation of extracellular signal-regulated kinases and protein kinase B/AKT. These effects were blocked by the specific CXCR4 antagonist AMD3100 and by CXCR4 RNA interference. Moreover, AMD3100 effectively reduced tumor growth in nude mice inoculated with different ATC cells. Thus, we suggest that CXCR4 targeting is a novel potential strategy in the treatment of human ATC.


Cancer Research | 2009

The beta-catenin axis integrates multiple signals downstream from RET/papillary thyroid carcinoma leading to cell proliferation.

Maria Domenica Castellone; Valentina De Falco; Deva Magendra Rao; Roberto Bellelli; Magesh Muthu; Fulvio Basolo; Alfredo Fusco; J. Silvio Gutkind; Massimo Santoro

RET/papillary thyroid carcinoma (RET/PTC) oncoproteins result from the in-frame fusion of the RET receptor tyrosine kinase domain with protein dimerization motifs encoded by heterologous genes. Here, we show that RET/PTC stimulates the beta-catenin pathway. By stimulating PI3K/AKT and Ras/extracellular signal-regulated kinase (ERK), RET/PTC promotes glycogen synthase kinase 3beta (GSK3beta) phosphorylation, thereby reducing GSK3beta-mediated NH(2)-terminal beta-catenin (Ser33/Ser37/Thr41) phosphorylation. In addition, RET/PTC physically interacts with beta-catenin and increases its phosphotyrosine content. The increased free pool of S/T(nonphospho)/Y(phospho)beta-catenin is stabilized as a result of the reduced binding affinity for the Axin/GSK3beta complex and activates the transcription factor T-cell factor/lymphoid enhancer factor. Moreover, through the ERK pathway, RET/PTC stimulates cyclic AMP-responsive element binding protein (CREB) phosphorylation and promotes the formation of a beta-catenin-CREB-CREB-binding protein/p300 transcriptional complex. Transcriptional complexes containing beta-catenin are recruited to the cyclin D1 promoter and a cyclin D1 gene promoter reporter is active in RET/PTC-expressing cells. Silencing of beta-catenin by small interfering RNA inhibits proliferation of RET/PTC-transformed PC Cl3 thyrocytes, whereas a constitutively active form of beta-catenin stimulates autonomous proliferation of thyroid cells. Thus, multiple signaling events downstream from RET/PTC converge on beta-catenin to stimulate cell proliferation.


Endocrine-related Cancer | 2010

The tyrosine kinase inhibitor ZD6474 blocks proliferation of RET mutant medullary thyroid carcinoma cells.

Donata Vitagliano; Valentina De Falco; Anna Tamburrino; Sabrina Coluzzi; Giancarlo Troncone; Gennaro Chiappetta; Fortunato Ciardiello; Giampaolo Tortora; James A. Fagin; Anderson J. Ryan; Francesca Carlomagno; Massimo Santoro

Oncogenic conversion of the RET tyrosine kinase is a frequent feature of medullary thyroid carcinoma (MTC). ZD6474 (vandetanib) is an ATP-competitive inhibitor of RET, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor receptors kinases. In this study, we have studied ZD6474 mechanism of action in TT and MZ-CRC-1 human MTC cell lines, carrying cysteine 634 to tryptophan (C634W) and methionine 918 to threonine (M918T) RET mutation respectively. ZD6474 blunted MTC cell proliferation and RET, Shc and p44/p42 mitogen-activated protein kinase (MAPK) phosphorylation. Single receptor knockdown by RNA interference showed that MTC cells depended on RET for proliferation. Adoptive expression of the ZD6474-resistant V804M RET mutant rescued proliferation of TT cells under ZD6474 treatment, showing that RET is a key ZD6474 target in these MTC cells. Upon RET inhibition, adoptive stimulation of EGFR partially rescued TT cell proliferation, MAPK signaling, and expression of cell-cycle-related genes. This suggests that simultaneous inhibition of RET and EGFR by ZD6474 may overcome the risk of MTC cells to escape from RET blockade through compensatory over-activation of EGFR.


Journal of Molecular Endocrinology | 2009

Molecular genetics of medullary thyroid carcinoma: the quest for novel therapeutic targets

Aniello Cerrato; Valentina De Falco; Massimo Santoro

Medullary thyroid carcinoma (MTC) is a rare tumour arising from neural crest-derived parafollicular C-cells. Metastatic MTC patients are incurable because the cancer does not respond to radiotherapy or chemotherapy. The REarranged during Transfection (RET) proto-oncogene plays a key role in the development of MTC. However, one-half of the sporadic MTC do not carry RET mutations. Mice models and early evidence obtained in human samples suggest that other genes, including those encoding components of the RB1 (retinoblastoma) and TP53 tumour-suppressor pathways, may be involved in MTC formation. Here, we review the data on the involvement of genes acting in the RET and RB1/TP53 pathways in MTC. Understanding genetic lesions that occur in MTC is a prerequisite to identifying molecular therapeutic targets in MTC and in improving the efficacy of RET-targeted therapies.


The Journal of Clinical Endocrinology and Metabolism | 2013

Ponatinib (AP24534) Is a Novel Potent Inhibitor of Oncogenic RET Mutants Associated With Thyroid Cancer

Valentina De Falco; Preziosa Buonocore; Magesh Muthu; Liborio Torregrossa; Fulvio Basolo; Marc Billaud; Joseph M. Gozgit; Francesca Carlomagno; Massimo Santoro

CONTEXT The RET tyrosine kinase encoding gene acts as a dominantly transforming oncogene in thyroid carcinoma and other malignancies. Ponatinib (AP24534) is an oral ATP-competitive tyrosine kinase inhibitor that is in advanced clinical experimentation in leukemia. OBJECTIVE We tested whether ponatinib inhibited RET kinase and oncogenic activity. METHODS Ponatinib activity was studied by an in vitro RET immunocomplex kinase assay and immunoblotting. The effects of ponatinib on proliferation of human TT, MZ-CRC-1, and TPC-1 thyroid carcinoma cells, which harbor endogenous oncogenic RET alleles, and of NIH3T3 fibroblasts transfected with oncogenic RET mutants were determined. Ponatinib activity on TT cell xenografted tumors in athymic mice was measured. RESULTS Ponatinib inhibited immunopurified RET kinase at the IC₅₀ of 25.8 nM (95% confidence interval [CI] = 23.15-28.77 nM). It also inhibited (IC₅₀ = 33.9 nM; 95% CI = 26.41-43.58 nM) kinase activity of RET/V804M, a RET mutant displaying resistance to other tyrosine kinase inhibitor. Ponatinib blunted phosphorylation of point-mutant and rearranged RET-derived oncoproteins and inhibited proliferation of RET-transformed fibroblasts and RET mutant thyroid carcinoma cells. Finally, after 3 weeks of treatment with ponatinib (30 mg/kg/d), the volume of TT cell (medullary thyroid carcinoma) xenografts was reduced from 133 mm³ to an unmeasurable size (difference = 133 mm³, 95% CI = -83 to 349 mm³) (P < .001). Ponatinib-treated TT cell tumors displayed a reduction in the mitotic index, RET phosphorylation, and signaling. CONCLUSIONS Ponatinib is a potent inhibitor of RET kinase and has promising preclinical activity in models of RET-driven medullary thyroid carcinoma.


Cancer Research | 2007

RET/Papillary Thyroid Carcinoma Oncogenic Signaling through the Rap1 Small GTPase

Valentina De Falco; Maria Domenica Castellone; Gabriella De Vita; Anna Maria Cirafici; Jerome M. Hershman; Carmen Guerrero; Alfredo Fusco; Rosa Marina Melillo; Massimo Santoro

RET/papillary thyroid carcinoma (PTC) oncoproteins result from the in-frame fusion of the RET receptor tyrosine kinase with protein dimerization motifs encoded by heterologous genes. Here, we show that RET/PTC1 activates the Rap1 small GTPase. The activation of Rap1 was dependent on the phosphorylation of RET Tyr(1062). RET/PTC1 recruited a complex containing growth factor receptor binding protein 2-associated binding protein 1 (Gab1), CrkII (v-crk sarcoma virus CT10 oncogene homologue II), and C3G (Rap guanine nucleotide exchange factor 1). By using dominant-negative and small interfering duplex (small interfering RNA) oligonucleotides, we show that RET/PTC1-mediated Rap1 activation was dependent on CrkII, C3G, and Gab1. Activation of Rap1 was involved in the RET/PTC1-mediated stimulation of the BRAF kinase and the p42/p44 mitogen-activated protein kinases. Proliferation and stress fiber formation of RET/PTC1-expressing PC Cl 3 thyroid follicular cells were inhibited by the dominant-negative Rap1(N17) and by Rap1-specific GTPase-activating protein. Thus, Rap1 is a downstream effector of RET/PTC and may contribute to the transformed phenotype of RET/PTC-expressing thyrocytes.


Oncogene | 2003

Ras-mediated apoptosis of PC CL 3 rat thyroid cells induced by RET/PTC oncogenes.

Maria Domenica Castellone; Anna Maria Cirafici; Gabriella De Vita; Valentina De Falco; Luca Malorni; Giovanni Tallini; James A. Fagin; Alfredo Fusco; Rosa Marina Melillo; Massimo Santoro

RET gene rearrangements, which generate chimeric RET/PTC oncogenes, are early events in the evolution of thyroid papillary carcinomas. Expression of RET/PTC oncogenes promotes neoplastic transformation of cultured thyroid cells and of thyroid glands in transgenic mice. Notwithstanding these oncogenic effects, we have found that the expression of two RET/PTC oncogenes (H4-RET and RFG-RET) induces apoptosis of rat thyroid PC CL 3 cells. Promotion of thyroid cell death depends on the kinase activity of RET/PTC and on the phosphorylation of a tyrosine residue (tyrosine 1062) that maps in the carboxy-terminus of the RET protein. Tyrosine 1062 is essential for RET/PTC-mediated activation of the Ras/ERK pathway. Inhibition of Ras/ERK by a dominant negative Ras or by the MEKI inhibitor, PD98059, obstructed RET/PTC-mediated apoptosis. We also show that signals transmitted by tyrosine 1062 mediate proapoptotic events like Bcl-2 down regulation and Bax upregulation, and that adoptive overexpression of Bcl-2 overcomes RET/PTC-induced apoptosis. Thus, gene rearrangements that generate RET/PTC oncogenes subvert RET function by converting it into a chronically active kinase that is constitutively phosphorylated on tyrosine 1062. In turn, Y1062 phosphorylation transmits not only mitogenic but also proapoptotic signals to thyroid cells.


American Journal of Pathology | 2004

The oncogenic activity of RET point mutants for follicular thyroid cells may account for the occurrence of papillary thyroid carcinoma in patients affected by familial medullary thyroid carcinoma.

Rosa Marina Melillo; Anna Maria Cirafici; Valentina De Falco; Marie Bellantoni; Gennaro Chiappetta; Alfredo Fusco; Francesca Carlomagno; Antonella Picascia; Donatella Tramontano; Giovanni Tallini; Massimo Santoro

Activating germ-line point mutations in the RET receptor are responsible for multiple endocrine neoplasia type 2-associated medullary thyroid carcinoma (MTC), whereas somatic RET rearrangements are prevalent in papillary thyroid carcinomas (PTCs). Some rare kindreds, carrying point mutations in RET, are affected by both cancer types, suggesting that, under specific circumstances, point mutations in RET can drive the generation of PTC. Here we describe a family whose siblings, affected by both PTC and MTC, carried a germ-line point mutation in the RET extracellular domain, converting cysteine 634 into serine. We tested on thyroid follicular cells the transforming activity of RET(C634S), RET(K603Q), another mutant identified in a kindred with both PTC and MTC, RET(C634R) a commonly isolated allele in MEN2A, RET(M918T) responsible for MEN2B and also identified in kindreds with both PTC and MTC, and RET/PTC1 the rearranged oncogene that characterizes bona fide PTC in patients without MTC. We show that the various RET point mutants, but not wild-type RET, scored constitutive kinase activity and exerted mitogenic effects for thyroid PC Cl 3 cells, albeit at significantly lower levels compared to RET/PTC1. The low mitogenic activity of RET point mutants paralleled their reduced kinase activity compared to RET/PTC. Furthermore, RET point mutants maintained a protein domain, the intracellular juxtamembrane domain, that exerted negative effects on the mitogenic activity. In conclusion, RET point mutants can behave as dominant oncogenes for thyroid follicular cells. Their transforming activity, however, is rather modest, providing a possible explanation for the rare association of MTC with PTC.

Collaboration


Dive into the Valentina De Falco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosa Marina Melillo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesca Carlomagno

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maria Domenica Castellone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfredo Fusco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Anna Maria Cirafici

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Valentina Guarino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuliana Salvatore

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar

Anna Tamburrino

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge