Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentina Fodale is active.

Publication


Featured researches published by Valentina Fodale.


Nature Genetics | 2007

Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome

Marco Tartaglia; Len A. Pennacchio; Chen Zhao; Kamlesh K. Yadav; Valentina Fodale; Anna Sarkozy; Bhaswati Pandit; Kimihiko Oishi; Simone Martinelli; Wendy Schackwitz; Anna Ustaszewska; Joel Martin; James Bristow; Claudio Carta; Francesca Lepri; Cinzia Neri; Isabella Vasta; Kate Gibson; Cynthia J. Curry; Juan Pedro López Siguero; Maria Cristina Digilio; Giuseppe Zampino; Bruno Dallapiccola; Dafna Bar-Sagi; Bruce D. Gelb

Noonan syndrome is a developmental disorder characterized by short stature, facial dysmorphia, congenital heart defects and skeletal anomalies. Increased RAS-mitogen-activated protein kinase (MAPK) signaling due to PTPN11 and KRAS mutations causes 50% of cases of Noonan syndrome. Here, we report that 22 of 129 individuals with Noonan syndrome without PTPN11 or KRAS mutation have missense mutations in SOS1, which encodes a RAS-specific guanine nucleotide exchange factor. SOS1 mutations cluster at codons encoding residues implicated in the maintenance of SOS1 in its autoinhibited form. In addition, ectopic expression of two Noonan syndrome–associated mutants induces enhanced RAS and ERK activation. The phenotype associated with SOS1 defects lies within the Noonan syndrome spectrum but is distinctive, with a high prevalence of ectodermal abnormalities but generally normal development and linear growth. Our findings implicate gain-of-function mutations in a RAS guanine nucleotide exchange factor in disease for the first time and define a new mechanism by which upregulation of the RAS pathway can profoundly change human development.


Journal of Experimental Medicine | 2008

Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia

Elisabetta Flex; Valentina Petrangeli; Lorenzo Stella; Sabina Chiaretti; Tekla Hornakova; Laurent Knoops; Cristina Ariola; Valentina Fodale; Emmanuelle Clappier; Francesca Paoloni; Simone Martinelli; Alessandra Fragale; Massimo Sanchez; Simona Tavolaro; Monica Messina; Giovanni Cazzaniga; Andrea Camera; Giovanni Pizzolo; Assunta Tornesello; Marco Vignetti; Angela Battistini; Hélène Cavé; Bruce D. Gelb; Jean-Christophe Renauld; Andrea Biondi; Stefan N. Constantinescu; Robin Foà; Marco Tartaglia

Aberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. We report that somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis. All mutations were missense, and some were predicted to destabilize interdomain interactions controlling the activity of the kinase. Three mutations that were studied promoted JAK1 gain of function and conferred interleukin (IL)-3–independent growth in Ba/F3 cells and/or IL-9–independent resistance to dexamethasone-induced apoptosis in T cell lymphoma BW5147 cells. Such effects were associated with variably enhanced activation of multiple downstream signaling pathways. Leukemic cells with mutated JAK1 alleles shared a gene expression signature characterized by transcriptional up-regulation of genes positively controlled by JAK signaling. Our findings implicate dysregulated JAK1 function in ALL, particularly of T cell origin, and point to this kinase as a target for the development of novel antileukemic drugs.


Nature Genetics | 2008

Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin

Hans Christian Hennies; Uwe Kornak; Haikuo Zhang; Johannes Egerer; Xin Zhang; Wenke Seifert; Jirko Kühnisch; Birgit Budde; Marc Nätebus; Francesco Brancati; William R. Wilcox; Dietmar Müller; Anna Rajab; Giuseppe Zampino; Valentina Fodale; Bruno Dallapiccola; William G. Newman; Kay Metcalfe; Jill Clayton-Smith; May Tassabehji; Beat Steinmann; Francis A. Barr; Peter Nürnberg; Peter Wieacker; Stefan Mundlos

Gerodermia osteodysplastica is an autosomal recessive disorder characterized by wrinkly skin and osteoporosis. Here we demonstrate that gerodermia osteodysplastica is caused by loss-of-function mutations in SCYL1BP1, which is highly expressed in skin and osteoblasts. The protein localizes to the Golgi apparatus and interacts with Rab6, identifying SCYL1BP1 as a golgin. These results associate abnormalities of the secretory pathway with age-related changes in connective tissues.


Human Molecular Genetics | 2014

Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis

Elisabetta Flex; Mamta Jaiswal; Francesca Pantaleoni; Simone Martinelli; Marion Strullu; Eyad Kalawy Fansa; Aurélie Caye; Alessandro De Luca; Francesca Lepri; Radovan Dvorsky; Luca Pannone; Stefano Paolacci; Si Cai Zhang; Valentina Fodale; Gianfranco Bocchinfuso; Cesare Rossi; Emma M M Burkitt-Wright; Andrea Farrotti; Emilia Stellacci; Serena Cecchetti; Rosangela Ferese; Lisabianca Bottero; Silvana Castro; Odile Fenneteau; Benoît Brethon; Massimo Sanchez; Amy E. Roberts; Helger G. Yntema; Ineke van der Burgt; Paola Cianci

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2S2G mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.


American Journal of Pathology | 2011

Phosphoproteomic Analysis of Signaling Pathways in Head and Neck Squamous Cell Carcinoma Patient Samples

Mitchell J. Frederick; Amy VanMeter; Mayur A. Gadhikar; Ying C. Henderson; Hui Yao; Curtis R. Pickering; Michelle D. Williams; Adel K. El-Naggar; Vlad C. Sandulache; Emily Tarco; Jeffrey N. Myers; Gary L. Clayman; Lance A. Liotta; Emanuel F. Petricoin; Valerie S. Calvert; Valentina Fodale; Jing Wang; Randal S. Weber

Molecular targeted therapy represents a promising new strategy for treating cancers because many small-molecule inhibitors targeting protein kinases have recently become available. Reverse-phase protein microarrays (RPPAs) are a useful platform for identifying dysregulated signaling pathways in tumors and can provide insight into patient-specific differences. In the present study, RPPAs were used to examine 60 protein end points (predominantly phosphoproteins) in matched tumor and nonmalignant biopsy specimens from 23 patients with head and neck squamous cell carcinoma to characterize the cancer phosphoproteome. RPPA identified 18 of 60 analytes globally elevated in tumors versus healthy tissue and 17 of 60 analytes that were decreased. The most significantly elevated analytes in tumor were checkpoint kinase (Chk) 1 serine 345 (S345), Chk 2 S33/35, eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) S65, protein kinase C (PKC) ζ/ι threonine 410/412 (T410/T412), LKB1 S334, inhibitor of kappaB alpha (IκB-α) S32, eukaryotic translation initiation factor 4E (eIF4E) S209, Smad2 S465/67, insulin receptor substrate 1 (IRS-1) S612, mitogen-activated ERK kinase 1/2 (MEK1/2) S217/221, and total PKC ι. To our knowledge, this is the first report of elevated PKC ι in head and neck squamous cell carcinoma that may have significance because PKC ι is an oncogene in several other tumor types, including lung cancer. The feasibility of using RPPA for developing theranostic tests to guide personalized therapy is discussed in the context of these data.


Journal of Medical Genetics | 2013

Loss of function of the E3 ubiquitin-protein ligase UBE3B causes Kaufman oculocerebrofacial syndrome

Elisabetta Flex; Andrea Ciolfi; Viviana Caputo; Valentina Fodale; Chiara Leoni; Daniela Melis; Maria Francesca Bedeschi; Laura Mazzanti; Antonio Pizzuti; Marco Tartaglia; Giuseppe Zampino

Background Kaufman oculocerebrofacial syndrome (KOS) is a developmental disorder characterised by reduced growth, microcephaly, ocular anomalies (microcornea, strabismus, myopia, and pale optic disk), distinctive facial features (narrow palpebral fissures, telecanthus, sparse and laterally broad eyebrows, preauricular tags, and micrognathia), mental retardation, and generalised hypotonia. KOS is a rare, possibly underestimated condition, with fewer than 10 cases reported to date. Here we investigate the molecular cause underlying KOS. Methods An exome sequencing approach was used on a single affected individual of an Italian consanguineous family coupled with mutation scanning using Sanger sequencing on a second unrelated subject with clinical features fitting the disorder. Results Exome sequencing was able to identify homozygosity for a novel truncating mutation (c.556C>T, p.Arg186stop) in UBE3B, which encodes a widely expressed HECT (homologous to the E6-AP carboxyl terminus) domain E3 ubiquitin-protein ligase. Homozygosity for a different nonsense lesion affecting the gene (c.1166G>A, p.Trp389stop) was documented in the second affected subject, supporting the recessive mode of inheritance of the disorder. Mutation scanning of the entire UBE3B coding sequence on a selected cohort of subjects with features overlapping, in part, those recurring in KOS did not reveal disease-causing mutations, suggesting phenotypic homogeneity of UBE3B lesions. Discussion Our data provide evidence that KOS is caused by UBE3B loss of function, and further demonstrate the impact of misregulation of protein ubiquitination on development and growth. The available clinical records, including those referring to four UBE3B mutation-positive subjects recently described as belonging to a previously unreported entity, which fits KOS, document the clinical homogeneity of this disorder.


Human Molecular Genetics | 2016

SHOC2 subcellular shuttling requires the KEKE motif-rich region and N-terminal leucine-rich repeat domain and impacts on ERK signalling.

Marialetizia Motta; Giovanni Chillemi; Valentina Fodale; Serena Cecchetti; Simona Coppola; Silvia Stipo; Viviana Cordeddu; Pompeo Macioce; Bruce D. Gelb; Marco Tartaglia

SHOC2 is a scaffold protein composed almost entirely by leucine-rich repeats (LRRs) and having an N-terminal region enriched in alternating lysine and glutamate/aspartate residues (KEKE motifs). SHOC2 acts as a positive modulator of the RAS-RAF-MEK-ERK signalling cascade by favouring stable RAF1 interaction with RAS. We previously reported that the p.Ser2Gly substitution in SHOC2 underlies Mazzanti syndrome, a RASopathy clinically overlapping Noonan syndrome, promoting N-myristoylation and constitutive targeting of the mutant to the plasma membrane. We also documented transient nuclear translocation of wild-type SHOC2 upon EGF stimulation, suggesting a more complex function in signal transduction.Here, we characterized the domains controlling SHOC2 shuttling between the nucleus and cytoplasm, and those contributing to SHOC2S2G mistargeting to the plasma membrane, analysed the structural organization of SHOC2s LRR motifs, and determined the impact of SHOC2 mislocalization on ERK signalling. We show that LRRs 1 to 13 constitute a structurally recognizable domain required for SHOC2 import into the nucleus and constitutive targeting of SHOC2S2G to the plasma membrane, while the KEKE motif-rich region is necessary to achieve efficient SHOC2 export from the nucleus. We also document that SHOC2S2G localizes both in raft and non-raft domains, and that it translocates to the non-raft domains following stimulation. Finally, we demonstrate that SHOC2 trapping at different subcellular sites has a diverse impact on ERK signalling strength and dynamics, suggesting a dual counteracting modulatory role of SHOC2 in the control of ERK signalling exerted at different intracellular compartments.


Cancer Research | 2011

Abstract 2912: Protein pathway activation mapping of leukemia-associated JAK1 mutants

Valentina Fodale; Elisabetta Flex; Emilia Stellacci; Eleonora Policicchio; Jianghong Deng; Valerie S. Calvert; Lance A. Liotta; Emanuel F. Petricoin; Marco Tartaglia

The Janus kinase 1 (JAK1) is a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival and differentiation. We documented that somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL) (Flex et al. 2008, J Exp Med 205:751-8). JAK1 mutations were more prevalent among adult subjects with T-cell precursor ALL, where they accounted for approximately 20% of cases, and were associated with poor response to therapy and overall prognosis. In order to understand the molecular and cellular mechanisms by which aberrant JAK1 function contribute to leukemogenesis we analysed the signaling architecture of BaF3 cell lines stably expressing a series of leukemia-associated JAK1 gene mutations by Reverse Phase Protein Microarray (RPMA). We utilized BaF3 cell lines, stably expressing human wild type JAK1 and five ALL-associated mutants bearing missense mutations in different domains of the kinase. Cells were serum starved for 16 hours and lysed before and after induction with IL-3 for 20 minutes. RPMA analysis was performed to determine the phosphorylation/activation state of 102 different key signalling proteins involved in the major intracellular signal transduction pathways. Results showed that intacellular signaling downstream JAK/STAT is differentially modulated between cell lines expressing the different ALL-associated JAK1 mutants. Statistical analysis revealed that mutations affecting the pseudo-kinase and in the kinase domains resulted in a different phosphorylation pathway network compared to mutations involving the FERM and SH2 domains. Our results support a model in which mutations affecting distinct domains of JAK1 have a differential perturbing effect on JAK1 function and signalling. Characterization of the consequences of leukemia-associated JAK1 mutants on the protein signalling network may help to identify new therapeutic targets for ALL. The present findings further document that functional protein pathway activation mapping using RPMA represents a powerful approach to uncovering mutation-driven events, and elucidating the specific events associated with different mutations within a single protein. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 2912. doi:10.1158/1538-7445.AM2011-2912


Clinical Cancer Research | 2008

Induction of both CD8+ and CD4+ T-cell-mediated responses in colorectal cancer patients by colon antigen-1.

Cristina Maccalli; Veronica Di Cristanziano; Valentina Fodale; Domenico Corsi; Giuseppina D'Agostino; Valentina Petrangeli; Luca Laurenti; Sofia Guida; Arabella Mazzocchi; Maria Paola Perrone; Chiara Castelli; Licia Rivoltini; Vittorina Zagonel; Marco Tartaglia; Giorgio Parmiani; Filippo Belardelli


Nature Genetics | 2007

Corrigendum: Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome

Marco Tartaglia; Len A. Pennacchio; Chen Zhao; Kamlesh K. Yadav; Valentina Fodale; Anna Sarkozy; Bhaswati Pandit; Kimihiko Oishi; Simone Martinelli; Wendy Schackwitz; Anna Ustaszewska; Joel Martin; James Bristow; Claudio Carta; Francesca Lepri; Cinzia Neri; Isabella Vasta; Kate Gibson; Cynthia J. Curry; Juan Pedro López Siguero; Maria Cristina Digilio; Giuseppe Zampino; Bruno Dallapiccola; Dafna Bar-Sagi; Bruce D. Gelb

Collaboration


Dive into the Valentina Fodale's collaboration.

Top Co-Authors

Avatar

Marco Tartaglia

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Zampino

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Simone Martinelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Bruce D. Gelb

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Francesca Lepri

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anna Ustaszewska

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Bhaswati Pandit

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Chen Zhao

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge