Valentina Franco-Trecu
University of the Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valentina Franco-Trecu.
PLOS ONE | 2013
Valentina Franco-Trecu; Massimiliano Drago; Federico G. Riet-Sapriza; Andrew C. Parnell; Rosina Frau; Pablo Inchausti
There are not “universal methods” to determine diet composition of predators. Most traditional methods are biased because of their reliance on differential digestibility and the recovery of hard items. By relying on assimilated food, stable isotope and Bayesian mixing models (SIMMs) resolve many biases of traditional methods. SIMMs can incorporate prior information (i.e. proportional diet composition) that may improve the precision in the estimated dietary composition. However few studies have assessed the performance of traditional methods and SIMMs with and without informative priors to study the predators’ diets. Here we compare the diet compositions of the South American fur seal and sea lions obtained by scats analysis and by SIMMs-UP (uninformative priors) and assess whether informative priors (SIMMs-IP) from the scat analysis improved the estimated diet composition compared to SIMMs-UP. According to the SIMM-UP, while pelagic species dominated the fur seal’s diet the sea lion’s did not have a clear dominance of any prey. In contrast, SIMM-IP’s diets compositions were dominated by the same preys as in scat analyses. When prior information influenced SIMMs’ estimates, incorporating informative priors improved the precision in the estimated diet composition at the risk of inducing biases in the estimates. If preys isotopic data allow discriminating preys’ contributions to diets, informative priors should lead to more precise but unbiased estimated diet composition. Just as estimates of diet composition obtained from traditional methods are critically interpreted because of their biases, care must be exercised when interpreting diet composition obtained by SIMMs-IP. The best approach to obtain a near-complete view of predators’ diet composition should involve the simultaneous consideration of different sources of partial evidence (traditional methods, SIMM-UP and SIMM-IP) in the light of natural history of the predator species so as to reliably ascertain and weight the information yielded by each method.
The Journal of Experimental Biology | 2016
Luis A. Hückstädt; Michael S. Tift; Federico G. Riet-Sapriza; Valentina Franco-Trecu; Alastair M. M. Baylis; Rachael A. Orben; John P. Y. Arnould; Maritza Sepúlveda; Macarena Santos-Carvallo; Jennifer M. Burns; Daniel P. Costa
ABSTRACT Our understanding of how air-breathing marine predators cope with environmental variability is limited by our inadequate knowledge of their ecological and physiological parameters. Because of their wide distribution along both coasts of the sub-continent, South American sea lions (Otaria byronia) provide a valuable opportunity to study the behavioral and physiological plasticity of a marine predator in different environments. We measured the oxygen stores and diving behavior of South American sea lions throughout most of its range, allowing us to demonstrate that diving ability and behavior vary across its range. We found no significant differences in mass-specific blood volumes of sea lions among field sites and a negative relationship between mass-specific oxygen storage and size, which suggests that exposure to different habitats and geographical locations better explains oxygen storage capacities and diving capability in South American sea lions than body size alone. The largest animals in our study (individuals from Uruguay) were the shallowest and shortest duration divers, and had the lowest mass-specific total body oxygen stores, while the deepest and longest duration divers (individuals from southern Chile) had significantly larger mass-specific oxygen stores, despite being much smaller animals. Our study suggests that the physiology of air-breathing diving predators is not fixed, but that it can be adjusted, to a certain extent, depending on the ecological setting and or habitat. These adjustments can be thought of as a ‘training effect’: as the animal continues to push its physiological capacity through greater hypoxic exposure, its breath-holding capacity increases. Summary: Regional variation in diving ability and behavior of the South American sea lion suggests that exposure to different habitats and geographical locations better explains oxygen storage capacities and diving capability than body size alone.
Annals of Human Genetics | 2017
Paula Costa-Urrutia; Carolina Abud; Valentina Franco-Trecu; Valentina Colistro; Martha Eunice Rodríguez-Arellano; Joel Vázquez-Pérez; Julio Granados; Marília Seelaender
We analyzed commonly reported European and Asian obesity‐related gene variants in a Mexican‐Mestizo population through each single nucleotide polymorphism (SNP) and a genetic risk score (GRS) based on 23 selected SNPs. Study subjects were physically active Mexican‐Mestizo adults (n = 608) with body mass index (BMI) values from 18 to 55 kg/m2. For each SNP and for the GRS, logistic models were performed to test for simple SNP associations with BMI, fat mass percentage (FMP), waist circumference (WC), and the interaction with VO2max and muscular endurance (ME). To further understand the SNP or GRS*physical fitness components, generalized linear models were performed. Obesity risk was significantly associated to 6 SNPs (ADRB2 rs1042713, APOB rs512535, PPARA rs1800206, TNFA rs361525, TRHR rs7832552 and rs16892496) after adjustment by gender, age, ancestry, VO2max, and ME. ME attenuated the influence of APOB rs512535 and TNFA rs361525 on obesity risk in FMP. WC was significantly associated to GRS. Both ME and VO2max attenuated GRS effect on WC. We report associations for 6 out of 23 SNPs and for the GRS, which confer obesity risk, a novel finding for Mexican‐Mestizo physically active population. Also, the importance of including physical fitness components variables in obesity genetic risk studies is highlighted, with special regard to intervention purposes.
PLOS ONE | 2016
Massimiliano Drago; Valentina Franco-Trecu; Luis Cardona; Pablo Inchausti; Washington Tapia; Diego Páez-Rosas
Most otariids have colony-specific foraging areas during the breeding season, when they behave as central place foragers. However, they may disperse over broad areas after the breeding season and individuals from different colonies may share foraging grounds at that time. Here, stable isotope ratios in the skull bone of adult Galapagos sea lions (Zalophus wollebaeki) were used to assess the long-term fidelity of both sexes to foraging grounds across the different regions of the Galapagos archipelago. Results indicated that the stable isotope ratios (δ13C and δ15N) of sea lion bone significantly differed among regions of the archipelago, without any significant difference between sexes and with a non significant interaction between sex and region. Moreover, standard ellipses, estimated by Bayesian inference and used as a measure of the isotopic resource use area at the population level, overlapped widely for the sea lions from the southern and central regions, whereas the overlap of the ellipses for sea lions from the central and western regions was small and non-existing for those from the western and southern regions. These results suggest that males and females from the same region within the archipelago use similar foraging grounds and have similar diets. Furthermore, they indicate that the exchange of adults between regions is limited, thus revealing a certain degree of foraging philopatry at a regional scale within the archipelago. The constraints imposed on males by an expanded reproductive season (~ 6 months), resulting from the weak reproductive synchrony among females, and those imposed on females by a very long lactation period (at least one year but up to three years), may explain the limited mobility of adult Galapagos sea lions of both sexes across the archipelago.
Evolution & Development | 2016
Valentina Franco-Trecu; Carolina Abud; Matías Feijoo; Guillermo Kloetzer; Marcelo Casacuberta; Paula Costa-Urrutia
A species, according to the biological concept, is a natural group of potentially interbreeding individuals isolated by diverse mechanisms. Hybridization is considered the production of offspring resulting from the interbreeding of two genetically distinct taxa. It has been documented in over 10% of wild animals, and at least in 34 cases for Artic marine mammals. In Otariids, intergeneric hybridization has been reported though neither confirming it through genetic analyses nor presenting evidence of fertile offspring. In this study, we report the finding of a hybrid adult female between a South American fur seal (Arctocephalus australis) and a South American sea lion (Otaria byronia), and its offspring, a male pup, in Uruguay. Further based on morphological constraints and breeding seasons, sex‐biased hybridization between the two species is hypothesized. Morphological and genetic (nuclear and mitochondrial) results confirm de hybrid nature of the female‐pup pair. Here we discuss a genetic dilution effect, considering other hybridization events must be occurring, and how isolation mechanisms could be circumvented. Moreover, the results obtained from stable isotope analysis suggest feeding habits may be a trait transmitted maternally, leading to consider broader issues regarding hybridization as an evolutionary innovation phenomenon.
Scientific Reports | 2018
Massimiliano Drago; Valentina Franco-Trecu; Angel M. Segura; Meica Valdivia; Enrique M. González; Alex Aguilar; Luis Cardona
Here, we analyse changes throughout time in the isotopic niche of the Franciscana dolphin (Pontoporia blainvillei), the South American fur seal (Arctocephalus australis) and the South American sea lion (Otaria flavescens) from the Río de la Plata estuary and adjacent Atlantic Ocean to test the hypothesis that fishing may modify the diet of small-gape predators by reducing the average size of prey. The overall evidence, from stable isotope and stomach contents analyses, reveals major changes in resource partitioning between the three predators considered, mainly because of an increased access of Franciscana dolphins to juvenile demersal fishes. These results are consistent with the changes in the length distribution of demersal fish species resulting from fishing and suggest that Franciscana dolphin has been the most benefited species of the three marine mammal species considered because of its intermediate mouth gape. In conclusion, the impact of fishing on marine mammals goes beyond the simple reduction in prey biomass and is highly dependent on the mouth gape of the species involved.
Primary Care Diabetes | 2018
Paula Costa-Urrutia; Carolina Abud; Valentina Franco-Trecu; Valentina Colistro; Martha Eunice Rodríguez-Arellano; Julio Granados; Marília Seelaender
Pre diabetes mellitus (pre-DM) is considered an early-reversible condition that can progress to Type 2 diabetes mellitus (T2DM) which is the main cause of death for adult Mexican population. Gene variants influencing fasting glucose levels may constitute helpful tool for prevention purposes in pre-DM condition. Physically active Mexican-Mestizo adults (n=565) were genotyped for 6 single nucleotide polymorphisms (SNPs) (ADIPOQ rs2241766, ACSL1 rs9997745, LIPC rs1800588, PPARA rs1800206, PPARG rs1801282 and PPARGC1A rs8192678) related to lipid and carbohydrate metabolism. Fasting glucose was measured and values classified as pre-DM (≥100mg/dL) or normal fasting glucose. Logistic models were used to test associations between pre-DM condition and SNPs, and interaction with Body Mass Index (BMI) and physical fitness components. The A allele of ASCL1 rs9997745 conferred increased risk (OR=3.39, p=0.001) of pre-DM which is modulated by BMI. The A allele of the PPARGC1A rs8192678 showed significant SNP*BMI (OR=1.10, p=0.008) interaction effect for pre-DM risk, meaning that obese subjects showed higher pre-DM risk but normal weight subjects showed lower risk. The effect increased with age and was attenuated by higher cardiorespiratory values. We found that both ACSL1 rs9997745 and PPARGC1A rs8192678 are associated with pre-DM, and that BMI significantly modified their association.
Deep-sea Research Part Ii-topical Studies in Oceanography | 2013
Federico G. Riet-Sapriza; Daniel P. Costa; Valentina Franco-Trecu; Yamandú Marín; Julio Chocca; Bernardo González; Gastón Beathyate; B. Louise Chilvers; Luis A. Hückstädt
Marine Biology | 2014
Valentina Franco-Trecu; David Aurioles-Gamboa
Marine Mammal Science | 2015
Enrique A. Crespo; Adrián Schiavini; Néstor A. García; Valentina Franco-Trecu; R. Natalie P. Goodall; Diego Rodríguez; João Stenghel Morgante; Larissa Rosa de Oliveira