Valentina Masola
University of Verona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valentina Masola.
Journal of Biological Chemistry | 2012
Valentina Masola; Giovanni Gambaro; Elena Tibaldi; Anna Maria Brunati; Alessandra Gastaldello; Angela D'Angelo; Maurizio Onisto; Antonio Lupo
Background: FGF-2 induces EMT in PTECs, and HPSE regulates HS/syndecans. Results: The lack of HPSE prevents FGF-2-induced EMT; FGF-2 induces EMT through PI3K/AKT and produces an autocrine loop. Conclusion: HPSE is necessary for FGF-2 to produce EMT, to activate FGF-2 intracellular signaling, and to regulate its autocrine loop. Significance: HPSE is an interesting pharmacological target for the prevention of renal fibrosis. The epithelial-mesenchymal transition (EMT) of proximal tubular epithelial cells (PTECs) into myofibroblasts contributes to the establishment of fibrosis that leads to end stage renal disease. FGF-2 induces EMT in PTECs. Because the interaction between FGF-2 and its receptor is mediated by heparan sulfate (HS) and syndecans, we speculated that a deranged HS/syndecans regulation impairs FGF-2 activity. Heparanase is crucial for the correct turnover of HS/syndecans. The aim of the present study was to assess the role of heparanase on epithelial-mesenchymal transition induced by FGF-2 in renal tubular cells. In human kidney 2 (HK2) PTEC cultures, although FGF-2 induces EMT in the wild-type clone, it is ineffective in heparanase-silenced cells. The FGF-2 induced EMT is through a stable activation of PI3K/AKT which is only transient in heparanase-silenced cells. In PTECs, FGF-2 induces an autocrine loop which sustains its signal through multiple mechanisms (reduction in syndecan-1, increase in heparanase, and matrix metalloproteinase 9). Thus, heparanase is necessary for FGF-2 to produce EMT in PTECs and to sustain FGF-2 intracellular signaling. Heparanase contributes to a synergistic loop for handling syndecan-1, facilitating FGF-2 induced-EMT. In conclusion, heparanase plays a role in the tubular-interstitial compartment favoring the FGF-2-dependent EMT of tubular cells. Hence, heparanase is an interesting pharmacological target for the prevention of renal fibrosis.
Journal of Translational Medicine | 2012
Valentina Masola; Maurizio Onisto; Gianluigi Zaza; Antonio Lupo; Giovanni Gambaro
BackgroundEpithelial-mesenchymal transition of tubular cells is a widely recognized mechanism that sustains interstitial fibrosis in diabetic nephropathy (DN). The signaling of FGF-2, a growth factor involved in this mechanism, is regulated by glycosaminoglycans. Heparanase-1, an endoglycosidase that cleaves heparan sulfate, is implicated in the pathogenesis of diabetic nephropathy and is necessary to FGF-2 for the induction of tubular cells transition. Well known Heparanase-1 inhibitors are heparin(s) and sulodexide, a low-molecular weight heparin – dermatan sulphate blend, which is effective in the treatment of DN.MethodsWe have investigated the inhibition by sulodexide and its components of Heparanase-1 by an ELISA assay. We have analyzed its effect on the epithelial-mesenchymal transition of tubular cells by real time gene expression analysis, zymography and migration assay.ResultsResults show that sulodexide is an effective heparanase-1 inhibitor, exclusively in virtue to the heparin component, with an IC50 of 5 μg/ml. In FGF-2 treated tubular cells, sulodexide also prevents the over-expression of the mesenchymal markers αSMA, vimentin and fibronectin and the motility increase, i.e. the epithelial-mesenchymal transition of tubular cells. Moreover, sulodexide prevents FGF-2 induced heparanase-1 and MMP9 increase switching off the autocrine loop that FGF-2 activates to support its signal.ConclusionsThe findings highlight the capacity of sulodexide to inhibit heparanase-1 and to control tubular fibrosis triggered by epithelial-mesenchymal transition. In conclusion, these sulodexide activities support the value of this agent in controlling the progression of nephropathy to renal failure.
PLOS ONE | 2015
Simona Granata; Valentina Masola; Elisa Zoratti; Maria Teresa Scupoli; Anna Baruzzi; Michele Messa; Fabio Sallustio; Loreto Gesualdo; Antonio Lupo; Gianluigi Zaza
To assess whether NLR pyrin domain-containing protein 3 (NLRP3) inflammasome, a multiprotein complex that mediates the activation of caspase-1 (CASP-1) and pro-inflammatory cytokines IL-18 and IL-1β, could be involved in the chronic inflammatory state observed in chronic kidney disease patients undergoing hemodialysis treatment (CKD-HD), we employed several biomolecular techniques including RT-PCR, western blot, FACS analysis, confocal microscopy and microarray. Interestingly, peripheral blood mononuclear cells from 15 CKD-HD patients showed higher mRNA levels of NLRP3, CASP-1, ASC, IL-1β, IL-18 and P2X7receptor compared to 15 healthy subjects. Western blotting analysis confirmed the above results. In particular, active forms of CASP-1, IL1-β and IL-18 resulted significantly up-regulated in CKD-HD versus controls. Additionally, elevated mitochondrial ROS level, colocalization of NLRP3/ASC/mitochondria in peripheral blood mononuclear cells from CKD-HD patients and down-regulation of CASP-1, IL1-β and IL-18 protein levels in immune-cells of CKD-HD patients stimulated with LPS/ATP in presence of mitoTEMPO, inhibitor of mitochondrial ROS production, suggested a possible role of this organelle in the aforementioned CKD-associated inflammasome activation. Then, microarray analysis confirmed, in an independent microarray study cohort, that NLRP3 and CASP-1, along with other inflammasome-related genes, were up-regulated in 17 CKD-HD patients and they were able to clearly discriminate these patients from 5 healthy subjects. All together these data showed, for the first time, that NLRP3 inflammasome was activated in uremic patients undergoing dialysis treatment and they suggested that this unphysiological condition could be possibly induced by mitochondrial dysfunction.
PLOS ONE | 2013
Gianluigi Zaza; Simona Granata; Valentina Masola; Carlo Rugiu; Francesco Fantin; Loreto Gesualdo; Francesco Paolo Schena; Antonio Lupo
Background Mitochondria, essential eukaryotic cells organelles defined as the “powerhouse of the cell” because of their ability to produce the vast majority of energy necessary for cellular metabolism, may have a primary role in the oxidative stress-related intracellular machinery associated to chronic kidney disease (CKD). Methods To better assess this research assumption, we decided to study the key factors regulating mitochondrial oxidative metabolism in CKD patients in peritoneal dialysis (PD, n = 15) using several bio-molecular methodologies. Results RT-PCR experiments demonstrate that the expression level of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and nuclear respiratory factor-1 (NRF-1), two genes primarily involved in mitochondrial biogenesis and functions, were significantly hypo-expressed in peripheral blood mononuclear cells of PD patients compared to healthy subjects (HS, n = 15). Additionally, mRNA levels of several PGC1-α downstream target genes (TFAM, COX6C,COX7C, UQCRH and MCAD) were profoundly down-regulated in PD cells. TFAM protein analysis confirmed gene-expression results. High plasmatic concentration of Malondialdehyde found in PD patients, confirmed the contribution of the oxidative stress to these biological effects. Finally, Nuclear factor erythroid-derived 2-like 2 (NRF2 or NFE2L2), a transcription factor for numerous antioxidant/detoxifying enzymes and one of its target genes, superoxide dismutase-2 mitochondrial (SOD2) were up-regulated in PD compared to HS. Conclusions Our results revealed, for the first time, that CKD-PD patients’ PBMC, through a complex intracellular biochemical machinery, are able to modulate their mitochondrial functions probably in the attempt to reduce oxidative metabolic damage and to turn on a valuable defense cellular strategy against oxidative stress.
BMC Cancer | 2009
Valentina Masola; Claudio Maran; Evelyne Tassone; Angelica Zin; Angelo Rosolen; Maurizio Onisto
BackgroundRhabdomyosarcoma (RMS) is a malignant soft tissue sarcoma of childhood including two major histological subtypes, alveolar (ARMS) and embryonal (ERMS) RMS. Like other human malignancies RMS possesses high metastatic potential, more pronounced in ARMS than in ERMS. This feature is influenced by several biological molecules, including soluble factors secreted by tumor cells, such as heparanase (HPSE). HPSE is an endo-β-D-glucuronidase that cleaves heparan sulphate proteoglycans.MethodsWe determined HPSE expression by Western blot analysis in ARMS and ERMS cells lines and activity in supernatants by an ELISA assay. Stable HPSE silencing has been performed by shRNA technique in RH30 and RD cell lines and their invasiveness has been evaluated by Matrigel-invasion assay. HPSE activity and mRNA expression have also been quantified in plasma and biopsies from RMS patients.ResultsHPSE expression and activity have been detected in all RMS cell lines. Stable HPSE silencing by shRNA technique determined a significant knockdown of gene expression equal to 76% and 58% in RH30 and RD cell lines respectively and induced a less invasive behaviour compared to untreated cells. Finally, we observed that HPSE mRNA expression in biopsies was higher than in foetal skeletal muscle and that plasma from RMS patients displayed significantly more elevated HPSE levels than healthy subjects with a trend to higher levels in ARMS.ConclusionIn conclusion, our data demonstrate for the first time HPSE expression and activity in RMS and highlight its involvement in tumor cell invasion as revealed by shRNA silencing. Moreover, HPSE expression in RMS patients is significantly higher with respect to healthy subjects. Further studies are warranted to assess possible relationships between HPSE and clinical behaviour in RMS.
Current Cancer Drug Targets | 2014
Valentina Masola; Maria Francesca Secchi; Giovanni Gambaro; Maurizio Onisto
Heparanase is the unique and specific functional endoglycosidase capable of cleaving heparan sulfate (HS) chains. It exerts its enzymatic activity catalyzing the cleavage of the β (1,4)-glycosidic bond between glucuronic acid and glucosamine residue. HS cleavage results in remodelling of the extracellular matrix as well as in regulating the release of many HS-linked molecules such as growth factors, cytokines and enzymes involved in inflammation, wound healing and tumour invasion. A pro-metastatic and pro-angiogenic role for this enzyme has been widely demonstrated in many primary human tumours since high levels of heparanase correlate with lymph node and distant metastasis, elevated micro vessel density and reduced survival of cancer patients. Recently, data have been reported that heparanase regulates heparan sulfate proteoglycan syndecan-1 and promotes its shedding from the cell surface. Shed syndecan-1 in turn controls tumour growth, metastasis and neo-angiogenesis mainly by promoting growth-factor signaling in the tumour milieu. Considering that, once inactivated, there are no other molecules capable of performing the same function, it is evident how this enzyme may be an effective and attractive drug target. Several heparanase inhibitors have been developed and some of them have undergone clinical trials showing efficacy against tumours. In this mini-review we will discuss current knowledge of heparanase involvement in cancer as well as its targeted inhibition as a promising therapeutic option in tumour treatment.
PLOS ONE | 2016
Valentina Masola; Gianluigi Zaza; Giovanni Gambaro; Maurizio Onisto; Gloria Bellin; Gisella Vischini; Iyad Khamaysi; Ahmad Hassan; Shadi Hamoud; Nativ O; Samuel N. Heyman; Antonio Lupo; Israel Vlodavsky; Zaid Abassi
Background Ischemia/reperfusion (I/R) is an important cause of acute renal failure and delayed graft function, and it may induce chronic renal damage by activating epithelial to mesenchymal transition (EMT) of renal tubular cells. Heparanase (HPSE), an endoglycosidase that regulates FGF-2 and TGFβ-induced EMT, may have an important role. Therefore, aim of this study was to evaluate its role in the I/R-induced renal pro-fibrotic machinery by employing in vitro and in vivo models. Methods Wild type (WT) and HPSE-silenced renal tubular cells were subjected to hypoxia and reoxygenation in the presence or absence of SST0001, an inhibitor of HPSE. In vivo, I/R injury was induced by bilateral clamping of renal arteries for 30 min in transgenic mice over-expressing HPSE (HPA-tg) and in their WT littermates. Mice were sacrificed 48 and 72 h after I/R. Gene and protein EMT markers (α-SMA, VIM and FN) were evaluated by bio-molecular and histological methodologies. Results In vitro: hypoxia/reoxygenation (H/R) significantly increased the expression of EMT-markers in WT, but not in HPSE-silenced tubular cells. Notably, EMT was prevented in WT cells by SST0001 treatment. In vivo: I/R induced a remarkable up-regulation of EMT markers in HPA-tg mice after 48–72 h. Noteworthy, these effects were absent in WT animals. Conclusions In conclusion, our results add new insights towards understanding the renal biological mechanisms activated by I/R and they demonstrate, for the first time, that HPSE is a pivotal factor involved in the onset and development of I/R-induced EMT. It is plausible that in future the inhibition of this endoglycosidase may represent a new therapeutic approach to minimize/prevent fibrosis and slow down chronic renal disease progression in native and transplanted kidneys.
Journal of Translational Medicine | 2015
Valentina Masola; Gianluigi Zaza; Maurizio Onisto; Antonio Lupo; Giovanni Gambaro
Tubulo-interstitial fibrosis has been recognized as the hallmark of progression of chronic kidney disease, but, despite intensive research studies, there are currently no biomarkers or effective treatments for this condition. In this context, a promising candidate could be heparanase-1 (HPSE), an endoglycosidase that cleaves heparan sulfate chains and thus takes part in extracellular matrix remodeling. As largely described, it has a central role in the pathogenesis of cancer and inflammation, and it participates in the complex biological machinery involved in the onset of different renal proteinuric diseases (e.g., diabetic nephropathy, glomerulonephritis). Additionally, HPSE may significantly influence the progression of chronic kidney damage trough its major role in the biological pathway of renal fibrogenesis. Here, we briefly summarize data supporting the role of HPSE in renal damage, focusing on recent evidences that demonstrate the capability of this enzyme to modulate the signaling of pro-fibrotic factors such as FGF-2 and TGF-β and consequently to control the epithelial-mesenchymal transition in renal tubular cells. We also emphasize the need of the research community to undertake studies and clinical trials to assess the potential clinical employment of this enzyme as diagnostic and prognostic tool and/or its role as therapeutic target for new pharmacological interventions.
Journal of Nephrology | 2014
Gianluigi Zaza; Simona Granata; Paola Tomei; Valentina Masola; Giovanni Gambaro; Antonio Lupo
Mammalian target of rapamycin inhibitors (mTOR-I), everolimus and sirolimus, are immunosuppressive drugs extensively used in renal transplantation. Their main mechanism of action is the inhibition of cell signaling through the PI3 K/Akt/mTOR pathway. This interesting mechanism of action confers to these medications both great immunosuppressive potential and important anti-neoplastic properties. Although the clinical utility of this drug category, as with other antineoplastic/immunosuppressants, is clear, the use of mTOR-I commonly results in the development of several complications. In particular, these agents may determine severe renal toxicity that, as recent studies report, seems clearly correlated to dose and duration of drug use. The mTOR-I-induced renal allograft spectrum of toxicity includes the enhanced incidence of delayed graft function, nephrotoxicity in particular when co-administered with calcineurin inhibitors (CNI) and onset of proteinuria. The latter effect appears highly frequent in patients undergoing mTOR-I treatment and significantly associated with a rapid graft lost. The damage leading to this complication interests both the glomerular and tubular area. mTOR-I cause an inhibition of proliferation in podocytes and the epithelial-to-mesenchymal transition in tubular cells. Interestingly, all these side effects are mostly reversible and dose related. Therefore, it is unquestionable that these particular drugs should be administered at the lowest dose able to maintain relatively low trough levels, in order to maximize their important and specific therapeutic effects while minimizing or avoiding drug toxicities. Utilization of low dosages of mTOR-I should be encouraged not only in CNI-combined schemas, but also when administered alone in a CNI-free immunosuppressive protocol.
Journal of Translational Medicine | 2013
Valentina Masola; Gianluigi Zaza; Simona Granata; Giovanni Gambaro; Maurizio Onisto; Antonio Lupo
BackgroundEverolimus (EVE) is a drug widely used in several renal transplant protocols. Although characterized by a relatively low nephrotoxicity, it may induce several adverse effects including severe fibro-interstitial pneumonitis. The exact molecular/biological mechanism associated to these pro-fibrotic effects is unknown, but epithelial to mesenchymal transition (EMT) may have a central role. Additionally, heparanase, an enzyme recently associated with the progression of chronic allograft nephropathy, could contribute to activate this machinery in renal cells.MethodsSeveral biomolecular strategies (RT-PCR, immunofluorescence, zymography and migration assay) have been used to assess the capability of EVE (10, 100, 200 and 500 nM) to induce an in vitro heparanase-mediated EMT in wild-type (WT) and Heparanase (HPSE)-silenced immortalized human renal epithelial proximal tubular cells (HK-2). Additionally, microarray technology was used to find additional biological elements involved in EVE-induced EMT.ResultsBiomolecular experiments demonstrated a significant up-regulation (more than 1.5 fold increase) of several genes encoding for well known EMT markers [(alpha-smooth muscle actin (α-SMA), Vimentin (VIM), Fibronectin (FN) and matrix metalloproteinase-9 (MMP9)], enhancement of MMP9 protein level and increment of cells motility in WT HK2 cells treated with high concentrations of EVE (higher than 100 nM). Similarly, immunofluorescence analysis showed that 100 nM of EVE increased α-SMA, VIM and FN protein expression in WT HK2 cells. All these effects were absent in both HPSE- and AKT-silenced cell lines. AKT is a protein having a central role in EMT. Additionally, microarray analysis identified other 2 genes significantly up-regulated in 100 nM EVE-treated cells (p < 0.005 and FDR < 5%): transforming growth factor beta-2 (TGFβ2) and epidermal growth factor receptor (EGFR). Real-time PCR analysis validated microarray.ConclusionsOur in vitro study reveals new biological/cellular aspects of the pro-fibrotic activity of EVE and it demonstrates, for the first time, that an heparanase-mediated EMT of renal tubular cells may be activated by high doses of this drug. Additionally, our results suggest that clinicians should administer the adequate dosage of EVE in order to increase efficacy and reduce adverse effects. Finally heparanase could be a new potential therapeutic target useful to prevent/minimize drug-related systemic fibrotic adverse effects.