Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentina Molteni is active.

Publication


Featured researches published by Valentina Molteni.


Nature | 2007

The nuclear receptor LXR is a glucose sensor

Nico Mitro; Puiying A. Mak; Leo Vargas; Cristina Godio; Eric Hampton; Valentina Molteni; Andreas Kreusch; Enrique Saez

The liver has a central role in glucose homeostasis, as it has the distinctive ability to produce and consume glucose. On feeding, glucose influx triggers gene expression changes in hepatocytes to suppress endogenous glucose production and convert excess glucose into glycogen or fatty acids to be stored in adipose tissue. This process is controlled by insulin, although debate exists as to whether insulin acts directly or indirectly on the liver. In addition to stimulating pancreatic insulin release, glucose also regulates the activity of ChREBP, a transcription factor that modulates lipogenesis. Here we describe another mechanism whereby glucose determines its own fate: we show that glucose binds and stimulates the transcriptional activity of the liver X receptor (LXR), a nuclear receptor that coordinates hepatic lipid metabolism. d-Glucose and d-glucose-6-phosphate are direct agonists of both LXR-α and LXR-β. Glucose activates LXR at physiological concentrations expected in the liver and induces expression of LXR target genes with efficacy similar to that of oxysterols, the known LXR ligands. Cholesterol homeostasis genes that require LXR for expression are upregulated in liver and intestine of fasted mice re-fed with a glucose diet, indicating that glucose is an endogenous LXR ligand. Our results identify LXR as a transcriptional switch that integrates hepatic glucose metabolism and fatty acid synthesis.


Nature | 2016

Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness

Shilpi Khare; Advait Nagle; Agnes Biggart; Yin H. Lai; Fang Liang; Lauren C. Davis; S. Whitney Barnes; Casey J. N. Mathison; Elmarie Myburgh; Mu-Yun Gao; J. Robert Gillespie; Xianzhong Liu; Jocelyn L. Tan; Monique Stinson; Ianne Rivera; Jaime Ballard; Vince Yeh; Todd Groessl; Hazel X. Y. Koh; John D. Venable; Badry Bursulaya; Michael B. Shapiro; Pranab Mishra; Glen Spraggon; Ansgar Brock; Jeremy C. Mottram; Frederick S. Buckner; Srinivasa P. S. Rao; Ben G. Wen; John R. Walker

Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.


Expert Opinion on Therapeutic Patents | 2010

Liver X receptor modulators: a review of recently patented compounds (2009 – 2012)

Jon Loren; Zhihong Huang; Bryan A Laffitte; Valentina Molteni

Introduction: The development of small molecule agonists of the liver X receptors (LXRs) has been an area of interest for over a decade, given the critical role of those receptors in cholesterol metabolism, glucose homeostasis, inflammation, innate immunity and lipogenesis. Many potential indications have been characterized over time including atherosclerosis, diabetes, inflammation, Alzheimers disease and cancer. However, concerns about the lipogenic effects of full LXRα/β agonists have required extensive efforts aimed at identifying LXRβ agonist with limited activity on the LXRα receptor to increase the safety margins. Areas covered: This review includes a summary of the LXR agonists that have reached the clinic and summarizes the patent applications for LXR modulators from September 2009 to December 2012 with emphasis on chemical matters, biological data associated with selected analogs and therapeutic indications. Expert opinion: As LXR agonists have the potential to be useful for many indications, the scientific community, despite setbacks due to on-target side effects, has maintained interest and devised strategies to overcome safety hurdles. While a clinical proof of concept still remains elusive, the recent advancement of compounds into the clinic highlights that acceptable safety margins in preclinical species have been achieved.


ACS Medicinal Chemistry Letters | 2012

Discovery of GNF-5837, a Selective TRK Inhibitor with Efficacy in Rodent Cancer Tumor Models

Pam Albaugh; Yi Fan; Yuan Mi; Fangxian Sun; Francisco Adrian; Nanxin Li; Yong Jia; Yelena Sarkisova; Andreas Kreusch; Tami Hood; Min Lu; Guoxun Liu; Shenlin Huang; Zuosheng Liu; Jon Loren; Tove Tuntland; Donald S. Karanewsky; H. Martin Seidel; Valentina Molteni

Neurotrophins and their receptors (TRKs) play key roles in the development of the nervous system and the maintenance of the neural network. Accumulating evidence points to their role in malignant transformations, chemotaxis, metastasis, and survival signaling and may contribute to the pathogenesis of a variety of tumors of both neural and non-neural origin. By screening the GNF kinase collection, a series of novel oxindole inhibitors of TRKs were identified. Optimization led to the identification of GNF-5837 (22), a potent, selective, and orally bioavailable pan-TRK inhibitor that inhibited tumor growth in a mouse xenograft model derived from RIE cells expressing both TRKA and NGF. The properties of 22 make it a good tool for the elucidation of TRK biology in cancer and other nononcology indications.


PLOS Pathogens | 2015

Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease.

Shilpi Khare; Steven L. Roach; S. Whitney Barnes; Dominic Hoepfner; John R. Walker; Arnab K. Chatterjee; R. Jeffrey Neitz; Michelle R. Arkin; Case W. McNamara; Jaime Ballard; Yin Lai; Yue Fu; Valentina Molteni; Vince Yeh; James H. McKerrow; Richard Glynne; Frantisek Supek

Unbiased phenotypic screens enable identification of small molecules that inhibit pathogen growth by unanticipated mechanisms. These small molecules can be used as starting points for drug discovery programs that target such mechanisms. A major challenge of the approach is the identification of the cellular targets. Here we report GNF7686, a small molecule inhibitor of Trypanosoma cruzi, the causative agent of Chagas disease, and identification of cytochrome b as its target. Following discovery of GNF7686 in a parasite growth inhibition high throughput screen, we were able to evolve a GNF7686-resistant culture of T. cruzi epimastigotes. Clones from this culture bore a mutation coding for a substitution of leucine by phenylalanine at amino acid position 197 in cytochrome b. Cytochrome b is a component of complex III (cytochrome bc1) in the mitochondrial electron transport chain and catalyzes the transfer of electrons from ubiquinol to cytochrome c by a mechanism that utilizes two distinct catalytic sites, QN and QP. The L197F mutation is located in the QN site and confers resistance to GNF7686 in both parasite cell growth and biochemical cytochrome b assays. Additionally, the mutant cytochrome b confers resistance to antimycin A, another QN site inhibitor, but not to strobilurin or myxothiazol, which target the QP site. GNF7686 represents a promising starting point for Chagas disease drug discovery as it potently inhibits growth of intracellular T. cruzi amastigotes with a half maximal effective concentration (EC50) of 0.15 µM, and is highly specific for T. cruzi cytochrome b. No effect on the mammalian respiratory chain or mammalian cell proliferation was observed with up to 25 µM of GNF7686. Our approach, which combines T. cruzi chemical genetics with biochemical target validation, can be broadly applied to the discovery of additional novel drug targets and drug leads for Chagas disease.


Antimicrobial Agents and Chemotherapy | 2015

Antitrypanosomal Treatment with Benznidazole Is Superior to Posaconazole Regimens in Mouse Models of Chagas Disease

Shilpi Khare; Xianzhong Liu; Monique Stinson; Ianne Rivera; Todd Groessl; Tove Tuntland; Vince Yeh; Ben Wen; Valentina Molteni; Richard Glynne; Frantisek Supek

ABSTRACT Two CYP51 inhibitors, posaconazole and the ravuconazole prodrug E1224, were recently tested in clinical trials for efficacy in indeterminate Chagas disease. The results from these studies show that both drugs cleared parasites from the blood of infected patients at the end of the treatment but that parasitemia rebounded over the following months. In the current study, we sought to identify a dosing regimen of posaconazole that could permanently clear Trypanosoma cruzi from mice with experimental Chagas disease. Infected mice were treated with posaconazole or benznidazole, an established Chagas disease drug, and parasitological cure was defined as an absence of parasitemia recrudescence after immunosuppression. Twenty-day therapy with benznidazole (10 to 100 mg/kg of body weight/day) resulted in a dose-dependent increase in antiparasitic activity, and the 100-mg/kg regimen effected parasitological cure in all treated mice. In contrast, all mice remained infected after a 25-day treatment with posaconazole at all tested doses (10 to 100 mg/kg/day). Further extension of posaconazole therapy to 40 days resulted in only a marginal improvement of treatment outcome. We also observed similar differences in antiparasitic activity between benznidazole and posaconazole in acute T. cruzi heart infections. While benznidazole induced rapid, dose-dependent reductions in heart parasite burdens, the antiparasitic activity of posaconazole plateaued at low doses (3 to 10 mg/kg/day) despite increasing drug exposure in plasma. These observations are in good agreement with the outcomes of recent phase 2 trials with posaconazole and suggest that the efficacy models combined with the pharmacokinetic analysis employed here will be useful in predicting clinical outcomes of new drug candidates.


ACS Medicinal Chemistry Letters | 2015

(R)-2-Phenylpyrrolidine Substituted Imidazopyridazines: A New Class of Potent and Selective Pan-TRK Inhibitors.

Ha-Soon Choi; Paul Vincent Rucker; Zhicheng Wang; Yi Fan; Pamela A. Albaugh; Greg Chopiuk; Francois Gessier; Fangxian Sun; Francisco Adrian; Guoxun Liu; Tami Hood; Nanxin Li; Yong Jia; Jianwei Che; Susan McCormack; Allen Li; Jie Li; Auzon Steffy; AnneMarie Culazzo; Celine Tompkins; Van Phung; Andreas Kreusch; Min Lu; Bin Hu; Apurva Chaudhary; Mahavir Prashad; Tove Tuntland; Bo Liu; Jennifer L. Harris; H. Martin Seidel

Deregulated kinase activities of tropomyosin receptor kinase (TRK) family members have been shown to be associated with tumorigenesis and poor prognosis in a variety of cancer types. In particular, several chromosomal rearrangements involving TRKA have been reported in colorectal, papillary thyroid, glioblastoma, melanoma, and lung tissue that are believed to be the key oncogenic driver in these tumors. By screening the Novartis compound collection, a novel imidazopyridazine TRK inhibitor was identified that served as a launching point for drug optimization. Structure guided drug design led to the identification of (R)-2-phenylpyrrolidine substituted imidazopyridazines as a series of potent, selective, orally bioavailable pan-TRK inhibitors achieving tumor regression in rats bearing KM12 xenografts. From this work the (R)-2-phenylpyrrolidine has emerged as an ideal moiety to incorporate in bicyclic TRK inhibitors by virtue of its shape complementarity to the hydrophobic pocket of TRKs.


Journal of Biomolecular Screening | 2015

Lead Identification to Clinical Candidate Selection Drugs for Chagas Disease

R. Jeffrey Neitz; Steven Chen; Frantisek Supek; Vince Yeh; Danielle Kellar; Jiri Gut; Clifford Bryant; Alejandra Gallardo-Godoy; Valentina Molteni; Steven L. Roach; Arnab K. Chatterjee; Stephanie A. Robertson; Adam R. Renslo; Michelle R. Arkin; Richard Glynne; James H. McKerrow; Jair L. Siqueira-Neto

Chagas disease affects 8 million people worldwide and remains a main cause of death due to heart failure in Latin America. The number of cases in the United States is now estimated to be 300,000, but there are currently no Food and Drug Administration (FDA)–approved drugs available for patients with Chagas disease. To fill this gap, we have established a public-private partnership between the University of California, San Francisco and the Genomics Institute of the Novartis Research Foundation (GNF) with the goal of delivering clinical candidates to treat Chagas disease. The discovery phase, based on the screening of more than 160,000 compounds from the GNF Academic Collaboration Library, led to the identification of new anti-Chagas scaffolds. Part of the screening campaign used and compared two screening methods, including a colorimetric-based assay using Trypanosoma cruzi expressing β-galactosidase and an image-based, high-content screening (HCS) assay using the CA-I/72 strain of T. cruzi. Comparing molecules tested in both assays, we found that ergosterol biosynthesis inhibitors had greater potency in the colorimetric assay than in the HCS assay. Both assays were used to inform structure-activity relationships for antiparasitic efficacy and pharmacokinetics. A new anti–T. cruzi scaffold derived from xanthine was identified, and we describe its development as lead series.


Journal of Medicinal Chemistry | 2017

Discovery of Tropifexor (LJN452), a Highly Potent Non-bile Acid FXR Agonist for the Treatment of Cholestatic Liver Diseases and Nonalcoholic Steatohepatitis (NASH)

David C. Tully; Paul Vincent Rucker; Donatella Chianelli; Jennifer A. Williams; Agnes Vidal; Phil B. Alper; Daniel Mutnick; Badry Bursulaya; James Schmeits; Xiangdong Wu; Dingjiu Bao; Jocelyn Zoll; Young Chul Kim; Todd Groessl; Peter McNamara; H. Martin Seidel; Valentina Molteni; Bo Liu; Andrew Phimister; Sean B. Joseph; Bryan A. Laffitte

The farnesoid X receptor (FXR) is a nuclear receptor that acts as a master regulator of bile acid metabolism and signaling. Activation of FXR inhibits bile acid synthesis and increases bile acid conjugation, transport, and excretion, thereby protecting the liver from the harmful effects of bile accumulation, leading to considerable interest in FXR as a therapeutic target for the treatment of cholestasis and nonalcoholic steatohepatitis. We identified a novel series of highly potent non-bile acid FXR agonists that introduce a bicyclic nortropine-substituted benzothiazole carboxylic acid moiety onto a trisubstituted isoxazole scaffold. Herein, we report the discovery of 1 (tropifexor, LJN452), a novel and highly potent agonist of FXR. Potent in vivo activity was demonstrated in rodent PD models by measuring the induction of FXR target genes in various tissues. Tropifexor has advanced into phase 2 human clinical trials in patients with NASH and PBC.


Journal of Medicinal Chemistry | 2016

Optimization of Platelet-Derived Growth Factor Receptor (PDGFR) Inhibitors for Duration of Action, as an Inhaled Therapy for Lung Remodeling in Pulmonary Arterial Hypertension.

Duncan E. Shaw; Ferheen Baig; Ian Bruce; Sylvie Chamoin; Stephen Paul Collingwood; Sarah Cross; Satish Dayal; Peter Drückes; Pascal Furet; Vikki Furminger; Deborah Haggart; Martin Hussey; Irena Konstantinova; Jon Loren; Valentina Molteni; Sonia P. Roberts; John Reilly; Alex Michael Saunders; Rowan Stringer; Lilya Sviridenko; Matthew Thomas; Christopher Thomson; Christine Tomlins; Ben Wen; Vince Yeh; Andrew Pearce

A series of potent PDGFR inhibitors has been identified. The series was optimized for duration of action in the lung. A novel kinase occupancy assay was used to directly measure target occupancy after i.t. dosing. Compound 25 shows 24 h occupancy of the PDGFR kinase domain, after a single i.t. dose and has efficacy at 0.03 mg/kg, in the rat moncrotaline model of pulmonary arterial hypertension. Examination of PK/PD data from the optimization effort has revealed in vitro:in vivo correlations which link duration of action in vivo with low permeability and high basicity and demonstrate that nonspecific binding to lung tissue increases with lipophilicity.

Collaboration


Dive into the Valentina Molteni's collaboration.

Top Co-Authors

Avatar

Jon Loren

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vince Yeh

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Juliet Nabakka

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge