Valentina Pomatto
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valentina Pomatto.
Environmental Health | 2015
Jerrold J. Heindel; Frederick S. vom Saal; Bruce Blumberg; Patrizia Bovolin; Gemma Calamandrei; Graziano Ceresini; Barbara A. Cohn; Elena Fabbri; Laura Gioiosa; Christopher D. Kassotis; Juliette Legler; Michele La Merrill; Laura Rizzir; Ronit Machtinger; Alberto Mantovani; Michelle A. Mendez; Luisa Montanini; Laura Molteni; Susan C. Nagel; Stefano Parmigiani; Giancarlo Panzica; Silvia Paterlini; Valentina Pomatto; Jérôme Ruzzin; Giorgio Sartor; Thaddeus T. Schug; Maria E. Street; Alexander Suvorov; R. Volpi; R. Thomas Zoeller
A multidisciplinary group of experts gathered in Parma Italy for a workshop hosted by the University of Parma, May 16–18, 2014 to address concerns about the potential relationship between environmental metabolic disrupting chemicals, obesity and related metabolic disorders. The objectives of the workshop were to: 1. Review findings related to the role of environmental chemicals, referred to as “metabolic disruptors”, in obesity and metabolic syndrome with special attention to recent discoveries from animal model and epidemiology studies; 2. Identify conclusions that could be drawn with confidence from existing animal and human data; 3. Develop predictions based on current data; and 4. Identify critical knowledge gaps and areas of uncertainty. The consensus statements are intended to aid in expanding understanding of the role of metabolic disruptors in the obesity and metabolic disease epidemics, to move the field forward by assessing the current state of the science and to identify research needs on the role of environmental chemical exposures in these diseases. We propose broadening the definition of obesogens to that of metabolic disruptors, to encompass chemicals that play a role in altered susceptibility to obesity, diabetes and related metabolic disorders including metabolic syndrome.
General and Comparative Endocrinology | 2011
Valentina Pomatto; Francesco Alessandro Palermo; Gilberto Mosconi; Erika Cottone; Paolo Cocci; Massimo Nabissi; Luca Borgio; Alberta Maria Polzonetti-Magni; Maria Fosca Franzoni
Based on pharmacological, behavioral and neuroanatomical studies, the endocannabinoids appear to be pivotal in some important neuroendocrine regulations of both vertebrates and invertebrates. Interestingly, a well developed endocannabinoid system was recently demonstrated by us in different bonyfish brain areas which control reproduction, energy balance and stress. Fish in particular are very sensitive to different types of stressors which can heavily affect their reproductive activity and negatively reverberate on aquaculture. Since recent new data have been reported on endocrine disruptors (EDs) impact on zebrafish receptor CB1 expression, in the present research we have investigated the response of the endocannabinoid system to acute treatment with an environmental stressor such as the xenoestrogen nonylphenol (4NP) in the brain and peripheral tissues of the goldfish Carassius auratus. First of all the estrogenic effects induced by 4NP were demonstrated by a dose-dependent increase of plasma levels and gene expression of the biomarker vitellogenin, then changes in cannabinoid receptors and anandamide degradative enzyme, the fatty acid amide hydrolase (FAAH), were analysed by means of Real Time PCR. As the exposure to EDs may lead to an activation of estrogen receptors and affects the Aromatase (AROB) transcription, changes in mRNA levels for ER subtypes and AROB were also evaluated. Our results confirm in goldfish the effect of 4NP on ERα and ERβ1 receptors and point out a different sensitivity of CB1 and CB2 for this compound, suggesting distinct roles of these cannabinoid receptors in some adaptive processes to contrast stress induced by xenoestrogen exposure.
Frontiers in Endocrinology | 2014
Patrizia Bovolin; Erika Cottone; Valentina Pomatto; Silvia Fasano; Riccardo Pierantoni; Gilda Cobellis; Rosaria Meccariello
Endocannabinoids (eCBs) are natural lipids regulating a large array of physiological functions and behaviors in vertebrates. The eCB system is highly conserved in evolution and comprises several specific receptors (type-1 and type-2 cannabinoid receptors), their endogenous ligands (e.g., anandamide and 2-arachidonoylglycerol), and a number of biosynthetic and degradative enzymes. In the last few years, eCBs have been described as critical signals in the control of male and female reproduction at multiple levels: centrally, by targeting hypothalamic gonadotropin-releasing-hormone-secreting neurons and pituitary, and locally, with direct effects on the gonads. These functions are supported by the extensive localization of cannabinoid receptors and eCB metabolic enzymes at different levels of the hypothalamic–pituitary–gonadal axis in mammals, as well as bonyfish and amphibians. In vivo and in vitro studies indicate that eCBs centrally regulate gonadal functions by modulating the gonadotropin-releasing hormone–gonadotropin–steroid network through direct and indirect mechanisms. Several proofs of local eCB regulation have been found in the testis and male genital tracts, since eCBs control Sertoli and Leydig cells activity, germ cell progression, as well as the acquisition of sperm functions. A comparative approach usually is a key step in the study of physiological events leading to the building of a general model. Thus, in this review, we summarize the action of eCBs at different levels of the male reproductive axis, with special emphasis, where appropriate, on data from non-mammalian vertebrates.
International Journal of Endocrinology | 2013
Erika Cottone; Valentina Pomatto; Patrizia Bovolin
The endocannabinoid system (ECS) has a well-documented pivotal role in the control of mammalian reproductive functions, by acting at multiple levels, that is, central (CNS) and local (gonads) levels. Since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, in the present paper we review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, focussing in particular on the central regulation of teleost and amphibian reproduction. The morphofunctional distribution of brain cannabinoid receptors will be discussed in relation to other crucial signalling molecules involved in the control of reproductive functions, such as GnRH, dopamine, aromatase, and pituitary gonadotropins.
Annals of the New York Academy of Sciences | 2009
Erika Cottone; Alda Guastalla; Valentina Pomatto; E. Campantico; Francesco Alessandro Palermo; Alberta Polzonetti Magni; Ken Mackie; Maria Fosca Franzoni
Based on pharmacological, behavioral, and neuroanatomical studies, the endocannabinoid system appears to be pivotal in some neuroendocrine mechanisms, such as modulation of vertebrate reproduction, stress, and food intake. The present study aimed to investigate the involvement of the endocannabinoid system in the control of the feeding response in the goldfish. By means of immunohistochemistry techniques, using anti‐CB1 cannabinoid receptor, anti‐corticotropin‐releasing factor (CRF), and anti‐neuropeptide Y (NPY) antisera on brain sections of Carassius auratus, we found a topographical co‐distribution of the three signaling molecules through the preoptic area and posterior lobes of the hypothalamus and even a co‐localization of CB1 and NPY in the telencephalon. Previous results have shown that food deprivation in goldfish is accompanied by a significant increase of anandamide (AEA) levels in the telencephalon and AEA causes a dose‐dependent effect on food intake. We have thus investigated the possible influence of intraperitoneal AEA injections on NPY expression. Our results indicate an interplay between the endocannabinoid system and orexigenic and anorexigenic molecules, such as NPY and, possibly, CRF.
Neuroreport | 2009
Erika Cottone; Alda Guastalla; Valentina Pomatto; E. Campantico; Vincenzo Di Marzo; M.F. Franzoni
The endocannabinoid system has a well-documented pivotal role in the control of mammalian feeding response; nevertheless, some evidence is available regarding a similar role in nonmammalian vertebrates and invertebrates. As in the bonyfish Carassius auratus, CB1 cannabinoid receptors are abundant in brain regions involved in the control of food intake, and fasting affects endocannabinoid levels, in this study the effects of food deprivation and anandamide administration on CB1 expression were evaluated. Fasting led to a time-dependent increase of CB1 mRNA levels in the forebrain, an effect reversed by refeeding. Furthermore, the administration of exogenous anandamide reduced CB1 expression in food-deprived goldfish. Our results support the involvement of CB1 receptors in the control of energy intake in nonmammalian vertebrates.
The Journal of Steroid Biochemistry and Molecular Biology | 2018
Valentina Pomatto; Erika Cottone; Paolo Cocci; Matteo Mozzicafreddo; Gilberto Mosconi; Erik R. Nelson; Francesco Alessandro Palermo; Patrizia Bovolin
Recent studies suggest that exposure to some plasticizers, such as Bisphenol A (BPA), play a role in endocrine/metabolic dispruption and can affect lipid accumulation in adipocytes. Here, we investigated the adipogenic activity and nuclear receptor interactions of four plasticizers approved for the manufacturing of food-contact materials (FCMs) and currently considered safer alternatives. Differentiating 3T3-L1 mouse preadipocytes were exposed to scalar concentrations (0.01-25 μM) of DiNP (Di-iso-nonyl-phthalate), DiDP (Di-iso-decyl-phthalate), DEGDB (Diethylene glycol dibenzoate), or TMCP (Tri-m-cresyl phosphate). Rosiglitazone, a well-known pro-adipogenic peroxisome proliferator activated receptor gamma (PPARγ) agonist, and the plasticizer BPA were included as reference compounds. All concentrations of plasticizers were able to enhance lipid accumulation, with TMCP being the most effective one. Accordingly, when comparing in silico the ligand binding efficiencies to the nuclear receptors PPARγ and retinoid-X-receptor-alpha (RXRα), TMPC displayed the highest affinity to both receptors. Differently from BPA, the four plasticizers were most effective in enhancing lipid accumulation when added in the mid-late phase of differentiation, thus suggesting the involvement of different intracellular signalling pathways. In line with this, TMCP, DiDP, DiNP and DEGDB were able to activate PPARγ in transient transfection assays, while previous studies demonstrated that BPA acts mainly through other nuclear receptors. qRT-PCR studies showed that all plasticizers were able to increase the expression of CCAAT/enhancer binding protein β (Cebpβ) in the early steps of adipogenesis, and the adipogenesis master gene Pparγ2 in the middle phase, with very similar efficacy to that of Rosiglitazone. In addition, TMCP was able to modulate the expression of both Fatty Acid Binding Protein 4/Adipocyte Protein 2 (Fabp4/Ap2) and Lipoprotein Lipase (Lpl) transcripts in the late phase of adipogenesis. DEGDB increased the expression of Lpl only, while the phthalate DiDP did not change the expression of either late-phase marker genes Fabp4 and Lpl. Taken together, our results suggest that exposure to low, environmentally relevant doses of the plasticizers DiNP, DiDP, DEGDB and TMCP increase lipid accumulation in 3T3-L1 adipocytes, an effect likely mediated through activation of PPARγ and interference at different levels with the transcriptional cascade driving adipogenesis.
Environmental Health | 2017
Jerrold J. Heindel; Frederick S. vom Saal; Bruce Blumberg; Patrizia Bovolin; Gemma Calamandrei; Graziano Ceresini; Barbara A. Cohn; Elena Fabbri; Laura Gioiosa; Christopher D. Kassotis; Juliette Legler; Michele La Merrill; Laura Rizzi; Ronit Machtinger; Alberto Mantovani; Michelle A. Mendez; Luisa Montanini; Laura Molteni; Susan C. Nagel; Stefano Parmigiani; Giancarlo Panzica; Silvia Paterlini; Valentina Pomatto; Jérôme Ruzzin; Giorgio Sartor; Thaddeus T. Schug; Maria E. Street; Alexander Suvorov; R. Volpi; R. Thomas Zoeller
CorrectionAfter publication of the article [1], it has been brought to our attention that the thirteenth author of this article has had their name spelt incorrectly. In the original article the spelling “Laura Rizzir” was used. In fact the correct spelling should be “Laura Rizzi”.
Fish Physiology and Biochemistry | 2013
Erika Cottone; Valentina Pomatto; Fulvio Cerri; E. Campantico; Ken Mackie; Massimiliano Delpero; Alda Guastalla; Claudio Dati; Patrizia Bovolin; Maria Fosca Franzoni
Second Joint Meeting of Société Zoologique de France and Unione Zoologica Italiana | 2017
Erika Cottone; Ilaria D'Atri; Giulia Zuccarini; Valentina Pomatto; Yoav Gothilf; Giorgio R. Merlo; Patrizia Bovolin