Valentina Ruggieri
University of Modena and Reggio Emilia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valentina Ruggieri.
Peptides | 2008
Giovanni Vitale; Monica Filaferro; Valentina Ruggieri; Sonia Pennella; Claudio Frigeri; Anna Rizzi; Remo Guerrini; Girolamo Calo
Neuropeptide S (NPS) has been recently identified as the endogenous ligand of a previously orphan G-protein-coupled receptor now named NPSR. Both NPS and its receptor are expressed in the brain, where they modulate different functions. In particular, it has been demonstrated that intracerebroventricular (i.c.v.) injection of NPS in rodents increases wakefulness and promotes anxiolytic-like effects. In the present study we used the defensive burying (DB) test in rats to further investigate the action of human NPS (0.1-10 nmol, i.c.v.) on anxiety-related behaviors. Diazepam (1.5mg/kg, i.p.) and caffeine (20mg/kg, i.p.) were used in parallel experiments as standard anxiolytic and anxiogenic drugs, respectively. None of the tested drugs produced statistical differences in the latency to contact the probe, burying behavior latency, number of shocks received or immobility/freezing duration. Caffeine increased cumulative burying behavior and the buried bedding height in a statistically significant manner thus promoting anxiogenic like effects. Opposite results were obtained with diazepam that significantly reduced these behavioral parameters. The anxiolytic-like action of diazepam was mimicked by NPS that reduced cumulative burying behavior in a dose dependent manner. Collectively, robust anxiolytic-like effects were recorded in response to NPS in the DB test. These results are of particular interest since the outcome of this assay is marginally influenced by drug effects on locomotor activity. In conclusion, we provide further evidence that NPS evokes genuine anxiolytic-like effects in the rat; therefore NPSR selective agonists are worthy of development as innovative drugs for the treatment of anxiety disorders.
The Journal of Physiology | 2010
Rita Bardoni; Alessia Ghirri; Micaela Zonta; Chiara Betelli; Giovanni Vitale; Valentina Ruggieri; Maurizio Sandrini
By releasing neuroactive agents, including proinflammatory cytokines, prostaglandins and neurotrophins, microglia and astrocytes are proposed to be involved in nociceptive transmission, especially in conditions of persistent, pathological pain. The specific action on dorsal horn neurons of agents released from astrocytes, such as glutamate, has been, however, poorly investigated. By using patch‐clamp and confocal microscope calcium imaging techniques in rat spinal cord slices, we monitored the activity of dorsal horn lamina II neurons following astrocyte activation. Results obtained revealed that stimuli that triggered Ca2+ elevations in astrocytes, such as the purinergic receptor agonist BzATP and low extracellular Ca2+, induce in lamina II neurons slow inward currents (SICs). Similarly to SICs triggered by astrocytic glutamate in neurons from other central nervous system regions, these currents (i) are insensitive to tetrodotoxin (TTX), (ii) are blocked by the NMDA receptor (NMDAR) antagonist d‐AP5, (iii) lack an AMPA component, and (iv) have slow rise and decay times. Ca2+ imaging also revealed that astrocytic glutamate evokes NMDAR‐mediated episodes of synchronous activity in groups of substantia gelatinosa neurons. Importantly, in a model of peripheral inflammation, the development of thermal hyperalgesia and mechanical allodynia was accompanied by a significant increase of spontaneous SICs in dorsal horn neurons. The NMDAR‐mediated astrocyte‐to‐neuron signalling thus represents a novel pathway that may contribute to the control of central sensitization in pathological pain.
Peptides | 2006
Giovanni Vitale; Rossana Arletti; Valentina Ruggieri; Carlo Cifani; Maurizio Massi
Different reports suggest that nociceptin/orphanin FQ (N/OFQ) may have either anxiolytic- or anxiogenic-like effect in rodents. Since N/OFQ elicits hypolocomotion, which undergoes rapid tolerance, and hypolocomotion may be associated to emotional consequences, the present study was designed to investigate the effect of N/OFQ on anxiety after development of tolerance to its hypolocomotor effect. The effect of single or double intracerebroventricular (i.c.v.) injection of N/OFQ was evaluated on anxiety-related behaviors in rats, in the elevated plus maze (EPM) and conditioned defensive burying (CDB) tests. After single administration, N/OFQ displayed an anxiogenic-like pattern of response on the elevated plus maze but hypolocomotion was also observed. Conversely, in the CDB test, N/OFQ induced a clear-cut anxiolytic pattern. To produce tolerance to N/OFQ-induced hypolocomotion the peptide was administered by two i.c.v. injections separated by 120 min; in these conditions it decreased the expression of anxiety-related behaviors in both tests without affecting locomotor activity. The nociceptin/orphanin FQ peptide (NOP) receptor antagonist UFP-101 significantly reduced the effects of N/OFQ to control values in either tests. Corticosterone levels were significantly increased after a single N/OFQ administration (not in a dose-dependent manner) but this increase did not reach significance after double administration (1 nmol/rat). Our results support the idea that N/OFQ may act as an anxiolytic-like agent in the rat; the apparent anxiogenic-like effect observed following its single administration in the EPM may be consequent to its effect on locomotion.
Peptides | 2010
Chiara Ruzza; Anna Rizzi; Claudio Trapella; Michela Pelà; Valeria Camarda; Valentina Ruggieri; Monica Filaferro; Carlo Cifani; Rainer K. Reinscheid; Giovanni Vitale; Roberto Ciccocioppo; Severo Salvadori; Remo Guerrini; Girolamo Calo
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). Previous studies demonstrated that the non-peptide molecule SHA 68 acts as a selective NPSR antagonist. In the present study the pharmacological profile of SHA 68 has been further investigated in vitro and in vivo. In cells expressing the mouse NPSR SHA 68 was inactive per se up to 10microM while it antagonized NPS-stimulated calcium mobilization in a competitive manner showing a pA(2) value of 8.06. In the 10-50mg/kg range of doses, SHA 68 counteracted the stimulant effects elicited by NPS, but not those of caffeine, in mouse locomotor activity experiments. In the mouse righting reflex assay SHA 68 fully prevented the arousal-promoting action of the peptide. The anxiolytic-like effects of NPS were slightly reduced by SHA 68 in the mouse open field, fully prevented in the rat elevated plus maze and partially antagonized in the rat defensive burying paradigm. Finally, SHA 68 was found poorly active in antagonizing the NPS inhibitory effect on palatable food intake in rats. In all assays SHA 68 did not produce any effect per se. In conclusion, the present study demonstrated that SHA 68 behaves as a selective NPSR antagonist that can be used to characterize the in vivo actions of NPS. However the usefulness of this research tool is limited by its poor pharmacokinetic properties.
Physiology & Behavior | 2010
Carlo Cifani; B Maria Vittoria Micioni Di; Giovanni Vitale; Valentina Ruggieri; Roberto Ciccocioppo; Maurizio Massi
Stress is a key determinant of binge eating (BE). Since Rhodiola rosea is known to modulate stress responses, its effect in a model of BE was investigated. BE for highly palatable food (HPF) was evoked in female rats by three 8-day cycles of food restriction/re-feeding (for 4days 66% of the usual chow intake; for 4days food ad libitum) and acute stress on the test day (day 25). R. rosea dry extract (3% rosavin, 3.12% salidroside) or its active principles were given by gavage 1h before access to HPF. Only rats exposed to both food restrictions and stress exhibited BE in the first 15-60min after the stressful procedure. R. rosea extract 10mg/kg significantly reduced and 20mg/kg abolished the BE episode. R. rosea extract 20mg/kg abolished also stress-induced increase in serum corticosterone levels. The R. rosea active principle salidroside, but not rosavin, at doses present in the extract, dose-dependently reduced or abolished BE for the period in which it was elicited. In conclusion results indicate that R. rosea extracts may have therapeutic properties in bingeing-related eating disorders and that salidroside is the active principle responsible for this effect.
PLOS ONE | 2015
Alessia Verduri; Fabrizio Luppi; Roberto D’Amico; Sara Balduzzi; Roberto Vicini; Anna Liverani; Valentina Ruggieri; Mario Plebani; Maria Pia Foschino Barbaro; Antonio Spanevello; Giorgio Walter Canonica; Alberto Papi; Leonardo M. Fabbri; Bianca Beghé
Background The duration of antibiotic treatment of exacerbations of COPD (ECOPD) is controversial. Serum procalcitonin (PCT) is a biomarker of bacterial infection used to identify the cause of ECOPD. Methods and Findings We investigated whether a PCT-guided plan would allow a shorter duration of antibiotic treatment in patients with severe ECOPD. For this multicenter, randomized, non-inferiority trial, we enrolled 184 patients hospitalized with ECOPD from 18 hospitals in Italy. Patients were assigned to receive antibiotics for 10 days (standard group) or for either 3 or 10 days (PCT group). The primary outcome was the rate of ECOPD at 6 months. Having planned to recruit 400 patients, we randomized only 183: 93 in the PCT group and 90 in the standard group. Thus, the completed study was underpowered. The ECOPD rate at 6 months between PCT-guided and standard antibiotic treatment was not significant (% difference, 4.04; 90% confidence interval [CI], −7.23 to 15.31), but the CI included the non-inferiority margin of 15. In the PCT-guided group, about 50% of patients were treated for 3 days, and there was no difference in primary or secondary outcomes compared to patients treated for 10 days. Conclusions Although the primary and secondary clinical outcomes were no different for patients treated for 3 or 10 days in the PCT group, the conclusion that antibiotics can be safely stopped after 3 days in patients with low serum PCT cannot be substantiated statistically. Thus, the results of this study are inconclusive regarding the noninferiority of the PCT-guided plan compared to the standard antibiotic treatment. The study was funded by Agenzia Italiana del Farmaco (AIFA-FARM58J2XH). Clinical trial registered with www.clinicaltrials.gov (NCT01125098). Trial Registration ClinicalTrials.gov NCT01125098
Peptides | 2012
Chiara Ruzza; Anna Rizzi; Valeria Camarda; A. Pulga; Giuliano Marzola; Monica Filaferro; C. Novi; Valentina Ruggieri; Erika Marzola; Giovanni Vitale; Severo Salvadori; Remo Guerrini; Girolamo Calo
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). Recently, the NPSR ligand [(t)Bu-D-Gly(5)]NPS was generated and in vitro characterized as a pure antagonist at the mouse NPSR. In the present study the pharmacological profile of [(t)Bu-D-Gly(5)]NPS has been investigated. [(t)Bu-D-Gly(5)]NPS activity was evaluated in vitro in the calcium mobilization assay at the rat NPSR and in vivo in the locomotor activity and righting reflex tests in mice and in the elevated plus maze and defensive burying assays in rats. In vitro, [(t)Bu-D-Gly(5)]NPS was inactive per se while it inhibited the calcium mobilization induced by 30 nM NPS (pK(B) 7.42). In Schild analysis experiments [(t)Bu-D-Gly(5)]NPS (0.1-10 μM) produced a concentration-dependent rightward shift of the concentration-response curve to NPS, showing a pA(2) value of 7.17. In mouse locomotor activity experiments, supraspinal injection of [(t)Bu-D-Gly(5)]NPS (1-10 nmol) dose dependently counteracted NPS (0.1 nmol) stimulant effects. In the mouse righting reflex assay [(t)Bu-D-Gly(5)]NPS (0.1-10 nmol) fully prevented the arousal-promoting action of the natural peptide (0.1 nmol). Finally, [(t)Bu-D-Gly(5)]NPS (3-30 nmol) was able to completely block NPS (1 nmol) anxiolytic-like actions in rat elevated plus maze and defensive burying assays. Collectively, the present results demonstrated that [(t)Bu-D-Gly(5)]NPS behaves both in vitro and in vivo as a pure and potent NPSR antagonist. This compound represents a novel and useful tool for investigating the pharmacology and neurobiology of the NPS/NPSR system.
Peptides | 2013
Monica Filaferro; C. Novi; Valentina Ruggieri; Susanna Genedani; Silvia Alboni; Davide Malagoli; Girolamo Calo; Remo Guerrini; Giovanni Vitale
Neuropeptide S (NPS) produces several biological actions by activating a formerly orphan GPCR, now named NPS receptor (NPSR). It has been previously demonstrated that NPS stimulates murine leukocyte chemotaxis in vitro. In the present study we investigated the ability of NPS, in comparison with the proinflammatory peptide formyl-Met-Leu-Phe (fMLP), to stimulate human monocyte chemotaxis. At a concentration of 10(-8)M fMLP significantly stimulated chemotaxis. NPS produced a concentration dependent chemotactic action over the concentration range 10(-12) to 10(-5)M. The NPSR antagonists [D-Cys((t)Bu)(5)]NPS, [(t)Bu-D-Gly(5)]NPS and SHA 68 were used to pharmacologically characterize NPS action. Monocyte chemoattractant effect of NPS, but not fMLP, was completely blocked by either peptide antagonists or SHA with the nonpeptide molecule being more potent. None of the NPSR antagonists modified per se random cell migration. Thus, the present study demonstrated that NPS is able to stimulate human monocyte chemotaxis and that this effect is entirely due to selective NPSR activation.
Life Sciences | 2010
Valentina Ruggieri; Giovanni Vitale; Monica Filaferro; Claudio Frigeri; Luigi Alberto Pini; Maurizio Sandrini
AIMS Combinations of non-steroidal anti-inflammatory drugs (NSAIDs) and cannabinoids are promising because of their potential synergistic effects in analgesia, resulting in a reduction in dosage and minimizing adverse reactions. The analgesic effect of acetylsalicylic acid (ASA), probably due to a central mechanism, also implicates changes in the central monoaminergic system. Therefore, we decided to evaluate the antinociceptive interaction between the CB(1) receptor agonist, HU210, and ASA in tests involving central pain in rats as well as the implication of the central serotonergic system thereon. MAIN METHODS The selective CB(1) antagonist SR141716A and the potent cannabinoid agonist HU210 were evaluated alone and in combination with ASA in both algesimetric tests (hot-plate and formalin tests) and for 5-HT activity and 5-HT(2) receptor density and affinity. KEY FINDINGS ASA or HU210 alone showed a dose-dependent effect in both tests. HU210, at an inactive dose, significantly increased the antinociceptive effect of the sub-active dose of ASA. SR141716A (1.5mg/kgi.p.) was ineffective per se and failed to modify antinociception induced by the HU210 plus ASA combination in either test. HU210 plus ASA significantly decreased the 5-HIAA/5-HT ratio and the 5-HT(2) receptor density in the frontal cortex, changes not antagonized by SR141716A. SIGNIFICANCE The present study provides evidence that mutual potentiation of the antinociceptive effects of HU210 and ASA may, at least partly, depend on serotonergic mechanisms, with an indirect participation of cannabinodiergic mechanism. In conclusion, combinations of low doses of cannabinoids and NSAIDs may be of interest from the therapeutic point of view.
Journal of Psychopharmacology | 2017
Giovanni Vitale; Monica Filaferro; Maria Vittoria Micioni Di Bonaventura; Valentina Ruggieri; Carlo Cifani; Remo Guerrini; Michele Simonato; Silvia Zucchini
The present study investigated the effect of [Nphe1] Arg14, Lys15-N/OFQ-NH2 (UFP-101), a selective NOP receptor antagonist, in chronic mild stress (CMS) in male Wistar rats. NOP receptor antagonists were reported to elicit antidepressant-like effects in rodents. Our aim was to investigate UFP-101 effects on CMS-induced anhedonia and impairment of hippocampal neurogenesis. UFP-101 (10 nmol/rat intracerebroventricularly) did not influence sucrose intake in non-stressed animals, but reinstated basal sucrose consumption in stressed animals from the second week of treatment. UFP-101 also reversed stress effects in forced swimming test and in open field. Fluoxetine (10 mg/kg intraperitoneally) produced similar effects. Moreover, we investigated whether UFP-101 could affect CMS-induced impairment in hippocampal cell proliferation and neurogenesis, and in fibroblast growth factor (FGF-2) expression. Our data confirm that CMS reduced neural stem cell proliferation and neurogenesis in adult rat hippocampus. Chronic UFP-101 treatment did not affect the reduced proliferation (bromodeoxyuridine-positive cells) observed in stressed animals. However, UFP-101 increased the number of doublecortin-positive cells, restoring neurogenesis. Finally, UFP-101 significantly increased FGF-2 expression, reduced by CMS. These findings support the view that blockade of NOP receptors produces antidepressant-like effects in CMS associated with positive effects on neurogenesis and FGF-2 expression. Therefore, NOP receptors may represent a target for innovative antidepressant drugs.