Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentina Totino is active.

Publication


Featured researches published by Valentina Totino.


PLOS ONE | 2013

Higher Prevalence and Abundance of Bdellovibrio bacteriovorus in the Human Gut of Healthy Subjects

Valerio Iebba; Floriana Santangelo; Valentina Totino; Mauro Nicoletti; Antonella Gagliardi; Riccardo Valerio De Biase; Salvatore Cucchiara; Lucia Nencioni; Maria Pia Conte; Serena Schippa

Introduction Members of the human intestinal microbiota are key players in maintaining human health. Alterations in the composition of gut microbial community (dysbiosis) have been linked with important human diseases. Understanding the underlying processes that control community structure, including the bacterial interactions within the microbiota itself, is essential. Bdellovibrio bacteriovorus is a gram-negative bacterium that preys other gram-negative species for survival, acting as a population-balancer. It was found in terrestrial/aquatic ecosystems, and in animal intestines, postulating its presence also in the human gut. Methods The present study was aimed to evaluate, by end-point PCR and qPCR, the presence of B. bacteriovorus in intestinal and faecal biopsy specimens from 92 paediatric healthy subjects and patients, suffering from Inflammatory Bowel Diseases (IBD), Celiac disease and Cystic fibrosis (CF). Results i) B. bacteriovorus was present and abundant only in healthy individuals, while it was heavily reduced in patients, as in the case of IBD and Celiac, while in CF patients and relative controls we observed comparable results; ii) B. bacteriovorus seemed to be mucosa-associated, because all IBD and Celiac biopsies (and related controls) were treated with mucus-removing agents, leaving only the mucosa-attached microflora; iii) B. bacteriovorus abundance was district-dependent, with a major preponderance in duodenum, and gradually decreasing up to rectum; iv) B. bacteriovorus levels significantly dropped in disease status, in duodenum and ileum. Conclusions Results obtained in this study could represent the first step for new therapeutic strategies aimed to restore a balance in the intestinal ecosystem, utilizing Bdellovibrio as a probiotic.


Frontiers in Microbiology | 2014

Outbreak of Achromobacter xylosoxidans in an Italian Cystic fibrosis center: genome variability, biofilm production, antibiotic resistance, and motility in isolated strains.

Maria Trancassini; Valerio Iebba; Nicoletta Citerà; Vanessa Tuccio; Magni A; Paola Varesi; Riccardo Valerio De Biase; Valentina Totino; Floriana Santangelo; Antonella Gagliardi; Serena Schippa

Cystic fibrosis (CF) patients have chronic airway infection and frequent exposure to antibiotics, which often leads to the emergence of resistant organisms. Achromobacter xylosoxidans is a new emergent pathogen in CF spectrum. From 2005 to 2010 we had an outbreak in A. xylosoxidans prevalence in our CF center, thus, the present study was aimed at deeply investigating virulence traits of A. xylosoxidans strains isolated from infected CF patients. To this purpose, we assessed A. xylosoxidans genome variability by randomly amplified polymorphic DNA (RAPD), biofilm production, antibiotic resistances, and motility. All A. xylosoxidans strains resulted to be biofilm producers, and were resistant to antibiotics usually employed in CF treatment. Hodge Test showed the ability to produce carbapenemase in some strains. Strains who were resistant to β-lactamics antibiotics, showed the specific band related to metal β-lactamase (blaIMP-1), and some of them showed to possess the integron1. Around 81% of A. xylosoxidans strains were motile. Multivariate analysis showed that RAPD profiles were able to predict Forced Expiratory Volume (FEV1%) and biofilm classes. A significant prevalence of strong biofilm producers strains was found in CF patients with severely impaired lung functions (FEV1% class 1). The outbreak we had in our center (prevalence from 8.9 to 16%) could be explained by an enhanced adaptation of A. xylosoxidans in the nosocomial environment, despite of aggressive antibiotic regimens that CF patients usually undergo.


BMC Research Notes | 2014

Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn’s disease patients: phenotypic and genetic pathogenic features

Maria Pia Conte; Catia Longhi; Massimiliano Marazzato; Conte Al; Marta Aleandri; Maria Stefania Lepanto; Carlo Zagaglia; Mauro Nicoletti; Marina Aloi; Valentina Totino; Anna T eresa Palamara; Serena Schippa

BackgroundAdherent-invasive Escherichia coli (AIEC) have been implicated in the ethiopathogenesis of Crohn’s disease (CD). In this study, we analyzed a collection of intestinal mucosa-associated E. coli isolates, presenting AIEC phenotypes, isolated from biopsies of CD pediatric patients and non-inflammatory bowel diseases (IBD) controls, in order to investigate their genetic and phenotypic pathogenic features.ResultsA total of 616 E. coli isolates from biopsies of four pediatric CD patients and of four non-IBD controls were collected and individually analyzed. For AIEC identification, adherent isolates were assayed for invasiveness, and the capacity of the adhesive-invasive isolates to survive and replicate intracellularly was determined over macrophages J774. In this way we identified 36 AIEC-like isolates. Interestingly, their relative abundance was significantly higher in CD patients (10%; 31/308) than in non-IBD controls (1%; 5/308) (χ 2 = 38.96 p < 0.001). Furthermore pulsed field gel electrophoresis (PFGE) and randomly amplified polymorphic DNA (RAPD) techniques were applied to analyze the clonality of the 36 AIEC-like isolates. The results obtained allowed us to identify 27 distinct genotypes (22 from CD patients and 5 from non-IBD controls). As for the AIEC prototype strain LF82, all 27 AIEC genotypes presented an aggregative pattern of adherence (AA) that was inhibited by D-mannose, indicating that adhesiveness of AIEC is likely mediated by type 1 pili. PCR analisys was used to investigate presence of virulence genes. The results indicated that among the 27 AIEC isolates, the incidence of genes encoding virulence factors K1 (χ 2 = 6.167 P = 0.013), kps MT II (χ 2 = 6.167 P = 0.013), fyuA (χ 2 = 6.167 P = 0.013), and ibeA (χ 2 = 8.867 P = 0.003) was significantly higher among AIEC strains isolated from CD patients than non-IBD controls.ConclusionsThe identification of AIEC strains in both CD and non-IBD controls, confirmed the “pathobiont” nature of AIEC strains. The finding that AIEC-like isolates were more abundant in CD patients, indicates that a close association of these strains with CD may also exists in pediatric patients.


Infection and Immunity | 2012

Microevolution in fimH Gene of Mucosa-Associated Escherichia coli Strains Isolated from Pediatric Patients with Inflammatory Bowel Disease

Valerio Iebba; Maria Pia Conte; Maria Stefania Lepanto; Giovanni Di Nardo; Floriana Santangelo; Marina Aloi; Valentina Totino; Monica Proietti Checchi; Catia Longhi; Salvatore Cucchiara; Serena Schippa

ABSTRACT Several studies reported increased numbers of mucosa-associated Escherichia coli strains in patients with inflammatory bowel disease (IBD), encompassing Crohns disease (CD) and ulcerative colitis (UC). The majority of E. coli strains possess type 1 fimbriae, whose tip fibrillum protein, FimH, naturally undergoes amino acid replacements, an important process in the adaptation of commensal E. coli strains to environmental changes, like those observed in IBD and urinary tract infections. In this study, we analyzed mutational patterns in the fimH gene of 52 mucosa-associated E. coli strains isolated from IBD and non-IBD pediatric patients, in order to investigate microevolution of this genetic trait. FimH-positive strains were also phylogenetically typed and tested for their adhesive ability on Caco-2 cells. Specific FimH alleles for each grouping feature were found. Mutations G66S and V27A were related to CD, while mutations A242V, V163A, and T74I were attributed to UC. Otherwise, the G66S, N70S, and S78N mutations were specifically attributed to B2/D phylogroups. The N70S and A119V mutations were related to adhesive E. coli strains. Phylogroup B2, adhesive, and IBD E. coli strains showed a higher site substitution rate (SSR) in the fimH gene, together with a higher number of mutations. The degree of naïve mucosal inflammation was related to specific FimH alleles. Moreover, we could suggest that the V27A mutation is pathoadaptive for the CD intestinal habitat, while we could also suggest that both the N70S and S78N mutations are related to the more virulent E. coli B2 phylogroup. In conclusion, we found some FimH variants that seem to be more involved than others in the evolution of IBD pathogenesis.


Frontiers in Microbiology | 2014

Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic fibrosis isolates

Valerio Iebba; Valentina Totino; Floriana Santangelo; Antonella Gagliardi; Luana Ciotoli; Alessandra Virga; Cecilia Ambrosi; Monica Pompili; Riccardo Valerio De Biase; Laura Selan; Marco Artini; Fabrizio Pantanella; Francesco Mura; Claudio Passariello; Mauro Nicoletti; Lucia Nencioni; Maria Trancassini; Serena Quattrucci; Serena Schippa

Bdellovibrio bacteriovorus is a predator bacterial species found in the environment and within the human gut, able to attack Gram-negative prey. Cystic fibrosis (CF) is a genetic disease which usually presents lung colonization by Pseudomonas aeruginosa or Staphylococcus aureus biofilms. Here, we investigated the predatory behavior of B. bacteriovorus against these two pathogenic species with: (1) broth culture; (2) “static” biofilms; (3) field emission scanning electron microscope (FESEM); (4) “flow” biofilms; (5) zymographic technique. We had the first evidence of B. bacteriovorus survival with a Gram-positive prey, revealing a direct cell-to-cell contact with S. aureus and a new “epibiotic” foraging strategy imaged with FESEM. Mean attaching time of HD100 to S. aureus cells was 185 s, while “static” and “flow” S. aureus biofilms were reduced by 74 (at 24 h) and 46% (at 20 h), respectively. Furthermore, zymograms showed a differential bacteriolytic activity exerted by the B. bacteriovorus lysates on P. aeruginosa and S. aureus. The dual foraging system against Gram-negative (periplasmic) and Gram-positive (epibiotic) prey could suggest the use of B. bacteriovorus as a “living antibiotic” in CF, even if further studies are required to simulate its in vivo predatory behavior.


Canadian Journal of Microbiology | 2012

A potential role of Escherichia coli pathobionts in the pathogenesis of pediatric inflammatory bowel disease

Serena Schippa; Valerio Iebba; Valentina Totino; Floriana Santangelo; Mariastefania Lepanto; C. Alessandri; F. Nuti; Franca Viola; Giovanni Di Nardo; Salvatore Cucchiara; Catia Longhi; Maria Pia Conte

Through genomic analysis of mucosa-associated Escherichia coli strains, we found a close genetic association among isolates from pediatric inflammatory bowel disease (IBD) patients. A specific E. coli pathovar, adherent-invasive E. coli (AIEC), was found in Crohns disease (CD) adult patients - this pathovar has enhanced adhesive and invasive properties, mainly due to the mannose-bonding FimH protein. We aimed to characterize 52 mucosa-associated E. coli strains isolated from pediatric IBD and non-IBD patients. Eleven E. coli strains, showing a strong similarity in fimH gene sequence to that of E. coli AIEC LF82, were characterized for fimH gene sequence, genomic profiling, adhesive and invasive ability, and phylogrouping. The results were compared with E. coli strains AIEC LF82 and MG1655. The 11 E. coli isolates showed 82.4% ± 1.4% fimH sequence similarity and 80.6% ± 1.3% genomic similarity to strain AIEC LF82. All these strains harbored V27A and S78N FimH mutations, as found in LF82. Nine of them belonged to the more virulent B2 and D phylogroups. Neuraminidase treatment, mimicking inflamed mucosa, enhanced adhesion of all 11 strains by 3.5-fold, but none showed invasion ability. It could be argued that the 11 selected strains could be a branch of an E. coli subpopulation (pathobionts), that could take advantage in an inflamed context because of a suitable genomic and (or) genetic backdrop.


American Journal of Tropical Medicine and Hygiene | 2015

Dramatic decrease in prevalence of soil-transmitted helminths and new insights into intestinal protozoa in children living in the Chaco Region, Bolivia

Fabio Macchioni; Higinio Segundo; Simona Gabrielli; Valentina Totino; Patricia Rojas Gonzales; Esteban Salazar; Ricardo Bozo; Alessandro Bartoloni; Gabriella Cancrini

We assessed the prevalence of intestinal parasites among 268 2–12-year-old children living in rural areas, small villages, and semi-urban areas of the Chaco region, south-eastern Bolivia. The overall parasitism was 69%. Only protozoa, helminths, or co-infections were observed in 89.2%, 5.9%, or 4.9% of the positive children, respectively. A significant progressive increase in overall parasite prevalence was found when passing from rural areas to small villages and semi-urban areas. The most commonly found species were Entamoeba coli (38.4%), Giardia intestinalis (37.7%), and Blastocystis spp. (16%). Hymenolepis nana was the most prevalent helminth (5.6%), followed by Ascaris lumbricoides and hookworms (1.5% and 0.4%) evidenced only in rural areas and in villages. Molecular diagnostics identified Blastocystis subtypes 9 and 2, and 5 infections by Entamoeba histolytica and 4 by Entamoeba dispar. The dramatic decrease in prevalence of soil-transmitted helminths with respect to that observed about 20 years ago (> 40%) evidences the success of the preventive chemotherapy intervention implemented in 1986. Health education and improved sanitation should be intensified to control protozoan infections.


Emerging Infectious Diseases | 2016

Human Babesiosis, Bolivia, 2013

Simona Gabrielli; Valentina Totino; Fabio Macchioni; Freddy Zuñiga; Patricia Rojas; Yuni Lara; Mimmo Roselli; Alessandro Bartoloni; Gabriella Cancrini

To investigate human babesiosis in the Bolivian Chaco, in 2013 we tested blood samples from 271 healthy persons living in 2 rural communities in this region. Microscopy and PCR indicated that 3.3% of persons were positive for Babesia microti parasites (US lineage); seroprevalence was 45.7%. Appropriate screening should mitigate the risk for transfusion-associated babesiosis.


Journal of Infection in Developing Countries | 2016

Intestinal parasitic infections and associated epidemiological drivers in two rural communities of the Bolivian Chaco.

Fabio Macchioni; Higinio Segundo; Valentina Totino; Simona Gabrielli; Patricia Rojas; Mimmo Roselli; Grover Adolfo Paredes; Mario Masana; Alessandro Bartoloni; Gabriella Cancrini

INTRODUCTION In 2013 a coproparasitological survey was carried out in two rural communities of the Bolivian Chaco to determine the prevalence of intestinal parasitic infections (IPIs) and to investigate on possible infection drivers through a questionnaire interview. METHODOLOGY Faecal samples were examined by microscopy. Samples positive for Entamoeba histolytica complex and Blastocystis were molecularly examined to identify the species/subtypes involved. RESULTS The overall infection rate was 86%, identical in both communities and mostly due to protozoa. Soil-transmitted helminths were detected in <3% of children and adults. DISCUSSION The protozoa detected, including Blastocystis subtypes, indicate faecal contamination of the environment by both humans (as confirmed by the presence of Hymenolepis nana) and animals. Nested-PCR identified E. histolytica, thus signalling the possible occurrence of invasive amoebosis. Lack of safe water, environmental contamination, poor sanitation and hygiene, shared by both communities, are the main drivers of IPIs. In addition, unlike gender and socioeconomic factors, childhood (only for some species), crowding and cohabitation with animals proved to be further significant protozoon infection risk factors. CONCLUSIONS These results highlight the need for the promotion of access to clean water, improved sanitation and better hygiene, thus reducing the frequency of preventive chemotherapy for STHs while continuing to monitor the population for possible recrudescence.


International Journal of Environmental Research and Public Health | 2018

Rebuilding the Gut Microbiota Ecosystem

Antonella Gagliardi; Valentina Totino; Fatima Cacciotti; Valerio Iebba; Bruna Neroni; Giulia Bonfiglio; Maria Trancassini; Claudio Passariello; Fabrizio Pantanella; Serena Schippa

A microbial ecosystem in which bacteria no longer live in a mutualistic association is called dysbiotic. Gut microbiota dysbiosis is a condition related with the pathogenesis of intestinal illnesses (irritable bowel syndrome, celiac disease, and inflammatory bowel disease) and extra-intestinal illnesses (obesity, metabolic disorder, cardiovascular syndrome, allergy, and asthma). Dysbiosis status has been related to various important pathologies, and many therapeutic strategies aimed at restoring the balance of the intestinal ecosystem have been implemented. These strategies include the administration of probiotics, prebiotics, and synbiotics; phage therapy; fecal transplantation; bacterial consortium transplantation; and a still poorly investigated approach based on predatory bacteria. This review discusses the various aspects of these strategies to counteract intestinal dysbiosis.

Collaboration


Dive into the Valentina Totino's collaboration.

Top Co-Authors

Avatar

Serena Schippa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Valerio Iebba

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Pia Conte

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catia Longhi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge