Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valeria Di Stefano.
Journal of Biological Chemistry | 2008
Pasquale Fasanaro; Yuri D'Alessandra; Valeria Di Stefano; Roberta Melchionna; Sveva Romani; Giulio Pompilio; Maurizio C. Capogrossi; Fabio Martelli
MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as negative gene expression regulators. In the present study, we investigated miRNAs role in endothelial cell response to hypoxia. We found that the expression of miR-210 progressively increased upon exposure to hypoxia. miR-210 overexpression in normoxic endothelial cells stimulated the formation of capillary-like structures on Matrigel and vascular endothelial growth factor-driven cell migration. Conversely, miR-210 blockade via anti-miRNA transfection inhibited the formation of capillary-like structures stimulated by hypoxia and decreased cell migration in response to vascular endothelial growth factor. miR-210 overexpression did not affect endothelial cell growth in both normoxia and hypoxia. However, anti-miR-210 transfection inhibited cell growth and induced apoptosis, in both normoxia and hypoxia. We determined that one relevant target of miR-210 in hypoxia was Ephrin-A3 since miR-210 was necessary and sufficient to down-modulate its expression. Moreover, luciferase reporter assays showed that Ephrin-A3 was a direct target of miR-210. Ephrin-A3 modulation by miR-210 had significant functional consequences; indeed, the expression of an Ephrin-A3 allele that is not targeted by miR-210 prevented miR-210-mediated stimulation of both tubulogenesis and chemotaxis. We conclude that miR-210 up-regulation is a crucial element of endothelial cell response to hypoxia, affecting cell survival, migration, and differentiation.
Cardiovascular Research | 2009
Valeria Di Stefano; Chiara Cencioni; Germana Zaccagnini; Alessandra Magenta; Maurizio C. Capogrossi; Fabio Martelli
AIMS A close relationship exists between hyperglycaemia, oxidative stress, and diabetic complications. In fact, high glucose (HG) determines the overproduction of reactive oxygen species (ROS) by the mitochondria. p66ShcA is a gene that regulates the apoptotic responses to oxidative stress. Indeed, p66ShcA knockout (ko) mice display decreased ROS production and increased resistance to ROS-induced cell death in a variety of pathophysiological settings. Reduced endothelial progenitor cell (EPC) number, differentiation, and function are relevant components of the angiogenesis impairment observed in diabetic patients. We examined the role of p66ShcA in the EPC deficit induced by HG. METHODS AND RESULTS Mouse bone marrow-derived c-kit+ cells differentiate in endothelial-like cells when plated on fibronectin (BM-derived EPCs). We found that cell culture in the presence of HG up-regulated p66ShcA protein expression and that HG exposure markedly decreased the number of BM-derived EPCs. Conversely, p66ShcA ko BM-derived EPCs were not sensitive to HG inhibition. Indeed, the resistance of p66ShcA ko BM-derived EPCs to HG was associated with reduced levels of both apoptosis and oxidative stress. To functionally link the HG response to ROS production, p66ShcA ko BM-derived EPCs were reconstituted either with p66ShcA wild-type (wt) or with a p66ShcA allele (p66ShcA qq) that was devoid of its ROS-generating function. We found that only p66ShcA wt and not the qq mutant rescued p66ShcA ko cell sensitivity to HG. One major feature of oxidative stress is its ability to reduce the bio-availability of nitric oxide (NO) that, in turn, plays a crucial role in endothelial differentiation and function. We found that the p66ShcA deletion prevented the HG-induced increase of nitrotyrosine, and that the resistance to HG of p66ShcA ko BM-derived EPCs was prevented by NO synthase inhibition. With a reciprocal approach, the treatment of p66ShcA wt cells with a NO donor prevented the HG-induced deficit. Finally, using a Matrigel plug angiogenesis assay, we demonstrated that p66ShcA ko prevented diabetic impairment of angiogenesis in vivo. CONCLUSION p66ShcA deletion rescues the BM-derived EPCs defect induced by HG, indicating p66ShcA as a potential therapeutic target in diabetic vasculopathy.
Vascular Pharmacology | 2011
Valeria Di Stefano; Germana Zaccagnini; Maurizio C. Capogrossi; Fabio Martelli
A host of studies have established essential roles for microRNAs in cardiovascular development and disease. Moreover, the discovery of stable microRNAs in bodily fluids indicated their potential as non-invasive biomarkers. In this review, we summarize the current studies describing microRNAs in blood cells or serum/plasma, as potential biomarkers of cardiovascular disease.
Molecular and Cellular Biology | 2008
Alessandra Magenta; Pasquale Fasanaro; Sveva Romani; Valeria Di Stefano; Maurizio C. Capogrossi; Fabio Martelli
ABSTRACT The retinoblastoma tumor suppressor protein (pRb) regulates cell proliferation and differentiation via phosphorylation-sensitive interactions with specific targets. While the role of cyclin/cyclin-dependent kinase complexes in the modulation of pRb phosphorylation has been extensively studied, relatively little is known about the molecular mechanisms regulating phosphate removal by phosphatases. Protein phosphatase 2A (PP2A) is constituted by a core dimer bearing catalytic activity and one variable B regulatory subunit conferring target specificity and subcellular localization. We previously demonstrated that PP2A core dimer binds pRb and dephosphorylates pRb upon oxidative stress. In the present study, we identified a specific PP2A-B subunit, PR70, that was associated with pRb both in vitro and in vivo. PR70 overexpression caused pRb dephosphorylation; conversely, PR70 knockdown prevented both pRb dephosphorylation and DNA synthesis inhibition induced by oxidative stress. Moreover, we found that intracellular Ca2+ mobilization was necessary and sufficient to trigger pRb dephosphorylation and PP2A phosphatase activity of PR70 was Ca2+ induced. These data underline the importance of PR70-Ca2+ interaction in the signal transduction mechanisms triggered by redox imbalance and leading to pRb dephosphorylation.
Journal of Biological Chemistry | 2012
Lucia Cicchillitti; Valeria Di Stefano; Eleonora Isaia; Luca Crimaldi; Pasquale Fasanaro; Valeria Ambrosino; Annalisa Antonini; Maurizio C. Capogrossi; Carlo Gaetano; Giulia Piaggio; Fabio Martelli
Background: miR-210 hypoxamir is induced by Hif1a in hypoxic cells. Results: miR-210 expression increased during myogenic differentiation in normoxia with a Hif1a-dependent mechanism. Moreover, miR-210 displayed a cytoprotective role in response to mitochondrial dysfunction and oxidative stress. Conclusion: miR-210 regulation and function extend beyond cell response to hypoxia. Significance: Identifying miR-210 as a potential target in skeletal muscle disorders. MicroRNA-210 (miR-210) induction is a virtually constant feature of the hypoxic response in both normal and transformed cells, regulating several key aspects of cardiovascular diseases and cancer. We found that miR-210 was induced in normoxic myoblasts upon myogenic differentiation both in vitro and in vivo. miR-210 transcription was activated in an hypoxia-inducible factor 1-α (Hif1a)-dependent manner, and chromatin immunoprecipitation experiments show that Hif1a bound to the miR-210 promoter only in differentiated myotubes. Accordingly, luciferase reporter assays demonstrated the functional relevance of the Hif1a binding site for miR-210 promoter activation in differentiating myoblasts. To investigate the functional relevance of increased miR-210 levels in differentiated myofibers, we blocked miR-210 with complementary locked nucleic acid oligonucleotides (anti-miR-210). We found that C2C12 myoblast cell line differentiation was largely unaffected by anti-miR-210. Likewise, miR-210 inhibition did not affect skeletal muscle regeneration following cardiotoxin damage. However, we found that miR-210 blockade greatly increased myotube sensitivity to oxidative stress and mitochondrial dysfunction. In conclusion, miR-210 is induced in normoxic myofibers, playing a cytoprotective role.
Journal of Biological Chemistry | 2011
Valeria Di Stefano; Mauro Giacca; Maurizio C. Capogrossi; Marco Crescenzi; Fabio Martelli
Proliferation of mammalian cardiomyocytes stops rapidly after birth and injured hearts do not regenerate adequately. High cyclin-dependent kinase inhibitor (CKI) levels have been observed in cardiomyocytes, but their role in maintaining cardiomyocytes in a post-mitotic state is still unknown. In this report, it was investigated whether CKI knockdown by RNA interference induced cardiomyocyte proliferation. We found that triple transfection with p21Waf1, p27Kip1, and p57Kip2 siRNAs induced both neonatal and adult cardiomyocyte to enter S phase and increased the nuclei/cardiomyocyte ratio; furthermore, a subpopulation of cardiomyocytes progressed beyond karyokynesis, as assessed by the detection of mid-body structures and by straight cardiomyocyte counting. Intriguingly, cardiomyocyte proliferation occurred in the absence of overt DNA damage and aberrant mitotic figures. Finally, CKI knockdown and DNA synthesis reactivation correlated with a dramatic change in adult cardiomyocyte morphology that may be a prerequisite for cell division. In conclusion, CKI expression plays an active role in maintaining cardiomyocyte withdrawal from the cell cycle.
Antioxidants & Redox Signaling | 2014
Germana Zaccagnini; Biagina Maimone; Valeria Di Stefano; Pasquale Fasanaro; Simona Greco; Alessandra Perfetti; Maurizio C. Capogrossi; Carlo Gaetano; Fabio Martelli
AIMS Peripheral artery disease is caused by the restriction or occlusion of arteries supplying the leg. Better understanding of the molecular mechanisms underpinning tissue response to ischemia is urgently needed to improve therapeutic options. The aim of this study is to investigate hypoxia-induced miR-210 regulation and its role in a mouse model of hindlimb ischemia. RESULTS miR-210 expression was induced by femoral artery dissection. To study the role of miR-210, its function was inhibited by the systemic administration of a miR-210 complementary locked nucleic acid (LNA)-oligonucleotide (anti-miR-210). In the ischemic skeletal muscle, anti-miR-210 caused a marked decrease of miR-210 compared with LNA-scramble control, while miR-210 target expression increased accordingly. Histological evaluation of acute tissue damage showed that miR-210 inhibition increased both apoptosis at 1 day and necrosis at 3 days. Capillary density decrease caused by ischemia was significantly more pronounced in anti-miR-210-treated mice; residual limb perfusion decreased accordingly. To investigate the molecular mechanisms underpinning the increased damage triggered by miR-210 blockade, we tested the impact of anti-miR-210 treatment on the transcriptome. Gene expression analysis highlighted the deregulation of mitochondrial function and redox balance. Accordingly, oxidative damage was more severe in the ischemic limb of anti-miR-210-treated mice and miR-210 inhibition increased oxidative metabolism. Further, oxidative-stress resistant p66(Shc)-null mice displayed decreased tissue damage following ischemia. INNOVATION This study identifies miR-210 as a crucial element in the adaptive mechanisms to acute peripheral ischemia. CONCLUSIONS The physiopathological significance of miR-210 is context dependent. In the ischemic skeletal muscle it seems to be cytoprotective, regulating oxidative metabolism and oxidative stress.
Antioxidants & Redox Signaling | 2017
Fabrizio Carlomosti; Marco D'Agostino; Sara Beji; Alessio Torcinaro; Roberto Rizzi; Germana Zaccagnini; Biagina Maimone; Valeria Di Stefano; Francesca De Santa; Sonia Cordisco; Annalisa Antonini; Roberta Ciarapica; Elena Dellambra; Fabio Martelli; Daniele Avitabile; Maurizio C. Capogrossi; Alessandra Magenta
AIMS Reactive oxygen species (ROS) play a pivotal role in different pathologic conditions, including ischemia, diabetes, and aging. We previously showed that ROS enhance miR-200c expression, causing endothelial cell (EC) apoptosis and senescence. Herein, we dissect the interaction among miR-200c and three strictly related proteins that modulate EC function and ROS production: sirtuin 1 (SIRT1), endothelial nitric oxide synthase (eNOS), and forkhead box O1 (FOXO1). Moreover, the role of miR-200c on ROS modulation was also investigated. RESULTS We demonstrated that miR-200c directly targets SIRT1, eNOS, and FOXO1; via this mechanism, miR-200c decreased NO and increased the acetylation of SIRT1 targets, that is, FOXO1 and p53. FOXO1 acetylation inhibited its transcriptional activity on target genes, that is, SIRT1 and the ROS scavengers, catalase and manganese superoxide dismutase. In keeping, miR-200c increased ROS production and induced p66Shc protein phosphorylation in Ser-36; this mechanism upregulated ROS and inhibited FOXO1 transcription, reinforcing this molecular circuitry. These in vitro results were validated in three in vivo models of oxidative stress, that is, human skin fibroblasts from old donors, femoral arteries from old mice, and a murine model of hindlimb ischemia. In all cases, miR-200c was higher versus control and its targets, that is, SIRT1, eNOS, and FOXO1, were downmodulated. In the mouse hindlimb ischemia model, anti-miR-200c treatment rescued these targets and improved limb perfusion. Innovation and Conclusion: miR-200c disrupts SIRT1/FOXO1/eNOS regulatory loop. This event promotes ROS production and decreases NO, contributing to endothelial dysfunction under conditions of increased oxidative stress such as aging and ischemia. Antioxid. Redox Signal. 27, 328-344.
Cell Cycle | 2011
Valeria Di Stefano; Fabio Martelli
Circulation | 2016
Marco D’Agostino; Fabrizio Carlomosti; Sara Beji; Germana Zaccagnini; Biagina Maimone; Valeria Di Stefano; Francesca De Santa; Sonia Cordisco; Annalisa Antonini; Roberta Ciarapica; Elena Dellambra; Fabio Martelli; Daniele Avitabile; Maurizio C. Capogrossi; Alessandra Magenta