Valéria Fagundes
Universidade Federal do Espírito Santo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valéria Fagundes.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Yuri L. R. Leite; Leonora Pires Costa; Ana Carolina Loss; Rita Gomes Rocha; Henrique Batalha-Filho; Alex Cardoso Bastos; Valéria da Silva Quaresma; Valéria Fagundes; Roberta Paresque; Marcelo Passamani; Renata Pardini
Significance The tropical forests of South America are among the most diverse and unique habitats in the world in terms of plant and animal species. One of the most popular explanations for this diversity and endemism is the idea that forests retracted and fragmented during glacial periods, forming ecological refuges, surrounded by dry lands or savannas. These historically stable forest refuges would have been responsible for maintaining the pattern of diversity and endemism observed today. Here, we show that the Atlantic Forest of eastern South America probably expanded, rather than contracted, during the last glacial period. In addition, the emerged Brazilian continental shelf played a major, yet neglected, role on the evolution of this biodiversity hotspot during the last glacial period. The forest refuge hypothesis (FRH) has long been a paradigm for explaining the extreme biological diversity of tropical forests. According to this hypothesis, forest retraction and fragmentation during glacial periods would have promoted reproductive isolation and consequently speciation in forest patches (ecological refuges) surrounded by open habitats. The recent use of paleoclimatic models of species and habitat distributions revitalized the FRH, not by considering refuges as the main drivers of allopatric speciation, but instead by suggesting that high contemporary diversity is associated with historically stable forest areas. However, the role of the emerged continental shelf on the Atlantic Forest biodiversity hotspot of eastern South America during glacial periods has been ignored in the literature. Here, we combined results of species distribution models with coalescent simulations based on DNA sequences to explore the congruence between scenarios of forest dynamics through time and the genetic structure of mammal species cooccurring in the central region of the Atlantic Forest. Contrary to the FRH predictions, we found more fragmentation of suitable habitats during the last interglacial (LIG) and the present than in the last glacial maximum (LGM), probably due to topography. We also detected expansion of suitable climatic conditions onto the emerged continental shelf during the LGM, which would have allowed forests and forest-adapted species to expand. The interplay of sea level and land distribution must have been crucial in the biogeographic history of the Atlantic Forest, and forest refuges played only a minor role, if any, in this biodiversity hotspot during glacial periods.
BMC Evolutionary Biology | 2009
Roberto V Vilela; Taís Machado; Karen Ventura; Valéria Fagundes; Maria José de Jesus Silva
BackgroundThe thin-spined porcupine, also known as the bristle-spined rat, Chaetomys subspinosus (Olfers, 1818), the only member of its genus, figures among Brazilian endangered species. In addition to being threatened, it is poorly known, and even its taxonomic status at the family level has long been controversial. The genus Chaetomys was originally regarded as a porcupine in the family Erethizontidae, but some authors classified it as a spiny-rat in the family Echimyidae. Although the dispute seems to be settled in favor of the erethizontid advocates, further discussion of its affinities should be based on a phylogenetic framework. In the present study, we used nucleotide-sequence data from the complete mitochondrial cytochrome b gene and karyotypic information to address this issue. Our molecular analyses included one individual of Chaetomys subspinosus from the state of Bahia in northeastern Brazil, and other hystricognaths.ResultsAll topologies recovered in our molecular phylogenetic analyses strongly supported Chaetomys subspinosus as a sister clade of the erethizontids. Cytogenetically, Chaetomys subspinosus showed 2n = 52 and FN = 76. Although the sexual pair could not be identified, we assumed that the X chromosome is biarmed. The karyotype included 13 large to medium metacentric and submetacentric chromosome pairs, one small subtelocentric pair, and 12 small acrocentric pairs. The subtelocentric pair 14 had a terminal secondary constriction in the short arm, corresponding to the nucleolar organizer region (Ag-NOR), similar to the erethizontid Sphiggurus villosus, 2n = 42 and FN = 76, and different from the echimyids, in which the secondary constriction is interstitial.ConclusionBoth molecular phylogenies and karyotypical evidence indicated that Chaetomys is closely related to the Erethizontidae rather than to the Echimyidae, although in a basal position relative to the rest of the Erethizontidae. The high levels of molecular and morphological divergence suggest that Chaetomys belongs to an early radiation of the Erethizontidae that may have occurred in the Early Miocene, and should be assigned to its own subfamily, the Chaetomyinae.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Karen B. Strier; Paulo B. Chaves; Sérgio L. Mendes; Valéria Fagundes; Anthony Di Fiore
Levels of reproductive skew vary in wild primates living in multimale groups depending on the degree to which high-ranking males monopolize access to females. Still, the factors affecting paternity in egalitarian societies remain unexplored. We combine unique behavioral, life history, and genetic data to evaluate the distribution of paternity in the northern muriqui (Brachyteles hypoxanthus), a species known for its affiliative, nonhierarchical relationships. We genotyped 67 individuals (22 infants born over a 3-y period, their 21 mothers, and all 24 possible sires) at 17 microsatellite marker loci and assigned paternity to all infants. None of the 13 fathers were close maternal relatives of females with which they sired infants, and the most successful male sired a much lower percentage of infants (18%) than reported for the most successful males in other species. Our findings of inbreeding avoidance and low male reproductive skew are consistent with the muriquis observed social and sexual behavior, but the long delay (≥2.08 y) between the onset of male sexual behavior and the age at which males first sire young is unexpected. The allocation of paternity implicates individual male life histories and access to maternal kin as key factors influencing variation in paternal—and grandmaternal—fitness. The apparent importance of lifelong maternal investment in coresident sons resonates with other recent examinations of maternal influences on offspring reproduction. This importance also extends the implications of the “grandmother hypothesis” in human evolution to include the possible influence of mothers and other maternal kin on male reproductive success in patrilocal societies.
Cytogenetic and Genome Research | 2006
Karen Ventura; Maria José de Jesus Silva; Valéria Fagundes; A.U. Christoff
Comparative studies among four species – Akodonazarae (2n = 38), A. lindberghi (2n = 42), A. paranaensis (2n = 44) and A. serrensis (2n = 46) – employing classic cytogenetics (C- and G-bands) and fluorescence in situ hybridization with telomeric (TTAGGG)n sequencesare reported here. Non-telomeric signals in addition to the regular telomeric sites were detected in three species:A. azarae, A. lindberghi and A. serrensis. One interstitial telomeric site (ITS) was observed proximally at the long arm of chromosome 1 of A. azarae. The comparison of G-banding patterns among the species indicated that the ITS was due to a tandem fusion/fission rearrangement. Non-telomeric signals of A. lindberghi and A. serrensis were not related to chromosomal rearrangements; instead, the sequences co-localized with (i) heterochromatic regions of all chromosomes in A. serrensis; (ii) some heterochromatic regions in A. lindberghi, and (iii) both euchromatic and heterochromatic regions in the metacentric pair of A. lindberghi. These exceptional findings revealed that ITS in Akodon can be related to chromosomal rearrangements and repetitive sequences in the constitutive heterochromatin and that the richness of TTAGGG-like sequences in the euchromatin could be hypothesized to be a result of amplification of the referred sequence along the chromosome arms.
Genetics and Molecular Biology | 2007
Roberta Paresque; Maria José de Jesus Silva; Valéria Fagundes
The karyotypes of 85 specimens of Oligoryzomys nigripes (Rodentia, Sigmodontinae) collected in the Cerrado and Atlantic Forest of seven states of Brazil were analyzed. Eighty four specimens presented a karyotype with 2n = 62 and one individual had 2n = 61 due to a monosomy of the X chromosome. High levels of intra- and inter-population karyotypic variability, due to sex chromosomes heteromorphisms and pericentric inversions in four autosomes (pairs 2, 3, 4 and 8), led to a variation of the autosomal arm numbers (fundamental number, FN) from 78 to 82. Synaptonemal complex analyses revealed normal meiosis in males heterozygous for pericentric inversions. We found 39 different cytotypes, 27 of which are herein described for the first time. A literature survey revealed 46 described karyotypes for O. nigripes. We tested the hypothesis that chromosomal variants frequencies are dependent on geographical distribution and we propose a model for the karyotypical evolution of Oligoryzomys nigripes with 2n = 62/FN = 78-82.
Journal of Mammalogy | 2008
Yuri L. R. Leite; Alexandre Uarth Christoff; Valéria Fagundes
Abstract Phyllomys is the most diverse genus of the subfamily Echimyinae, and is represented by 12 described species endemic to the Atlantic forest of eastern South America. We name and describe a new species of Phyllomys based on specimens collected in southern Brazil. This species is closely related to P. dasythrix and has been referred to as “Phyllomys aff. dasythrix” in the literature. Chromosomal restructuring was probably involved in their speciation because genetic and morphological similarities of the 2 contrast with their karyotypic distinctiveness. The new species of Phyllomys is diagnosed by a unique combination of external, cranial, and karyotypic characters. We propose the conservation status of “Least Concern” for Phyllomys sp. nov., but “Vulnerable” for P. dasythrix. We present an identification key to the living species of Phyllomys.
Cytogenetic and Genome Research | 2012
Karen Ventura; Y. Sato-Kuwabara; Valéria Fagundes; Lena Geise; Yuri L. R. Leite; Leonora Pires Costa; Maria José de Jesus Silva; Miguel Trefaut Rodrigues
Blarinomys breviceps possesses cryptic and burrowing habits with poorly documented genetics and life history traits. Due to its rarity, only a few specimens and DNA sequences have been deposited in collections worldwide. Here, we present the most comprehensive cytogenetic and molecular characterization of this rare genus. Phylogenetic analyses based on partial cytochrome b sequences were performed, attempting to establish the relationships among individuals with distinct karyotypes along the geographic distribution of the genus in the Atlantic Forest. Classical and molecular cytogenetics, using banding patterns and FISH of telomeric and whole chromosome X-specific painting probes (obtained from the Akodontini Akodon cursor) were used to characterize and compare the chromosomal complements. Molecular phylogenetic analyses recovered 2 main geographically structured clades, northeastern and southeastern with pairwise sequence divergences among specimens varying between 4.9 and 8.4%. Eight distinct karyomorphs are described: (A) 2n = 52 (50A, XX), (B) 2n = 52 (48A, XY+2Bs), (C) 2n = 45 (42A, XY+1B), (D) 2n = 43 (37A, XX+4Bs), (E) 2n = 37 (34A, XY+1B), (F) 2n = 34 (32A, XX), (G) 2n = 31 (27A, XX+2Bs), (H) 2n = 28 (26A, XY), all with the same number of autosomal arms (FNA = 50). Variation of 0–4 supernumerary chromosomes (Bs) presenting heterogeneity in morphology and distribution of interstitial telomeric sequences (ITSs) is reported. ITSs are also found in some metacentric autosomes. The phylogeographic separation between 2 major lineages with high levels of genetic divergence, and the wide karyotypic diversity indicate that B. breviceps is a diverse group that warrants taxonomic re-evaluation.
Caryologia | 2004
Karen Ventura; Maria José de Jesus Silva; Valéria Fagundes; Renata Pardini
Abstract Thaptomys nigrita is a monotypic species with 2n = 52 from Akodontini tribe. The karyotype is composed by 25 pairs of autosome being 24 acrocentric decreasing in size and a small metacentric pair. X and Y are respectively a medium size acrocentric and a small submetacentric. In this paper we report for the first time a karyotype with 2n = 50 for an undescribed species of genus Thaptomys. This new karyotype is encompasses by 24 pairs of acrocentric autosomes decreasing in size; X and Y chromosomes are respectively a large acrocentric and a small submetacentric; heterochromatic blocks are observed in the pericentromeric regions of all autosomes and of the X, whereas the long arm of the Y is entirely heterochromatic. Multiple Ag-NORs are located at the telomeric regions of the long arm of the autosomes, and a single chromosome pair (24) presents Ag-NORs in both telomeric regions, which is similar to the pattern observed in the metacentric autosome pair 25 of Thaptomys nigrita with 2n = 52. It can be suggested that this pair 24 has undergone a pericentric inversion and originated the acrocentric pair in Thaptomys sp. with 2n = 50. G-banding pattern and interstitial telomeric signal (ITS) by FISH suggest that the karyotype differentiation between both karyomorphs with 2n = 52 in Thaptomys nigrita and 2n = 50 of Thaptomys sp. was due to a tandem fusion involving respectively pairs 2 and 24 from the former resulting in pair 2 of the latter. We propose that this new karyotype with 2n = 50 belongs to a new and cryptic species for the genus Thaptomys, since these two entities seem to be morphologically indistinguishable and the geographic localization plus the chromosome rearrangements can represent a reproductive barrier between these two forms.
Genetics and Molecular Biology | 2010
Victor Hugo Colombi; Sílvia R. Lopes; Valéria Fagundes
Akodon cursor occurs in dense rainforest from northern (8° S) to southern (26° S) states along the Atlantic coast of Brazil. Previous karyological and molecular data revealed two major clades, one including northern (8-15° S) and the other southern (19-26° S) populations. The center of geographic distribution (15-20° S), which included the state of Espírito Santo, was identified as a potential vicariance region. Since river barriers are among the most discussed models in the study of Neotropical diversification, we examined whether the Rio Doce (19° S) plays an important role in shaping the population genetic divergence of A. cursor by including samples from Espírito Santo in the analysis. Our results showed that the northern-southern division region in Atlantic forest was no coincidence with the presence of the Rio Doce by refuting the hypothesis that this river is an effective barrier to gene flow between populations. Instead, we found evidence that isolation by geographical distance shaped the phylogeographical structure in the southern lineage. However, there is uncertainty about effectiveness of the processes involved and further studies based on wider sampling are needed.
Genetics and Molecular Biology | 2009
Roberta Paresque; Alexandre Uarth Christoff; Valéria Fagundes
Juliomys is a small rodent from the family Cricetidae which inhabits the Atlantic forest and forests from Argentina to eastern Brazil. The three species recognized so far have different karyotypes. In this paper, we describe a new karyotype with 2n = 32, FN = 48 found in Juliomys specimens from a high-altitude area in the Atlantic forest of southern Brazil. The karyotype was analyzed after G- and C-banding and silver staining of the nucleolus organizer regions (Ag-NOR) and its G-banding patterns were compared with those of the newly described species Juliomys ossitenuis (2n = 20, FN = 36). The 2n = 32 karyomorph presented peculiar features and was very different from those of the other species of the genus: J. pictipes (2n = 36, FN = 34), J. rimofrons (2n = 20, FN = 34) and J. ossitenuis (2n = 20, FN = 36). Differences were mostly due to centric and tandem fusions, pericentric inversion and loss of heterochromatin. The karyotype represents a powerful tool to differentiate Juliomys species and our data suggest that the karyotype described herein belongs to a new species.