Valeria Famiglini
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valeria Famiglini.
Journal of Medicinal Chemistry | 2013
Giuseppe La Regina; Ruoli Bai; Whilelmina Maria Rensen; Erica Di Cesare; Antonio Coluccia; Francesco Piscitelli; Valeria Famiglini; Alessia Reggio; Marianna Nalli; Sveva Pelliccia; Eleonora Da Pozzo; Barbara Costa; Ilaria Granata; Amalia Porta; Bruno Maresca; Alessandra Soriani; Maria Luisa Iannitto; Angela Santoni; Junjie Li; Marlein Miranda Cona; Feng Chen; Yicheng Ni; Andrea Brancale; Giulio Dondio; Stefania Vultaggio; Mario Varasi; Ciro Mercurio; Claudia Martini; Ernest Hamel; Patrizia Lavia
New arylthioindole derivatives having different cyclic substituents at position 2 of the indole were synthesized as anticancer agents. Several compounds inhibited tubulin polymerization at submicromolar concentration and inhibited cell growth at low nanomolar concentrations. Compounds 18 and 57 were superior to the previously synthesized 5. Compound 18 was exceptionally potent as an inhibitor of cell growth: it showed IC₅₀ = 1.0 nM in MCF-7 cells, and it was uniformly active in the whole panel of cancer cells and superior to colchicine and combretastatin A-4. Compounds 18, 20, 55, and 57 were notably more potent than vinorelbine, vinblastine, and paclitaxel in the NCI/ADR-RES and Messa/Dx5 cell lines, which overexpress P-glycoprotein. Compounds 18 and 57 showed initial vascular disrupting effects in a tumor model of liver rhabdomyosarcomas at 15 mg/kg intravenous dosage. Derivative 18 showed water solubility and higher metabolic stability than 5 in human liver microsomes.
ACS Combinatorial Science | 2012
Giuseppe La Regina; Valerio Gatti; Valeria Famiglini; Francesco Piscitelli; Romano Silvestri
We report the first example of venting-while-heating microwave-assisted synthesis of a small library of 3-arylthioindoles. Compounds were prepared in excellent isolated yields (90-98%) within 4 min in a closed vessel by treating indoles with disulfides in the presence of sodium hydride in anhydrous N,N-dimethylformamide. The method was not affected by electron-donating and -withdrawing substituents both on 3-arylthio moiety and at 2- and 5-positions of the indole nucleus.
Journal of Medicinal Chemistry | 2012
Giuseppe La Regina; Antonio Coluccia; Andrea Brancale; Francesco Piscitelli; Valeria Famiglini; Sandro Cosconati; Giovanni Maga; Alberta Samuele; Emmanuel Gonzalez; Bonaventura Clotet; Dominique Schols; José A. Esté; Ettore Novellino; Romano Silvestri
New indolylarylsulfone (IAS) derivatives bearing nitrogen containing substituents at the indole-2-carboxamide inhibited the HIV-1 WT in MT-4 cells at low nanomolar concentrations. In particular, compound 9 was uniformly effective against the mutant Y181C, Y188L, and K103N HIV-1 strains; it was highly active against the multidrug resistant mutant IRLL98 HIV-1 strain bearing the K101Q, Y181C, and G190A mutations conferring resistance to NVP, DLV, and EFV and several HIV-1 clades A in PBMC.
Journal of Medicinal Chemistry | 2014
Giuseppe La Regina; Ruoli Bai; Antonio Coluccia; Valeria Famiglini; Sveva Pelliccia; Sara Passacantilli; Carmela Mazzoccoli; Vitalba Ruggieri; Lorenza Sisinni; Alessio Bolognesi; Whilelmina Maria Rensen; Andrea Miele; Marianna Nalli; Romina Alfonsi; Lucia Di Marcotullio; Alberto Gulino; Andrea Brancale; Ettore Novellino; Giulio Dondio; Stefania Vultaggio; Mario Varasi; Ciro Mercurio; Ernest Hamel; Patrizia Lavia; Romano Silvestri
We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway.
Journal of Medicinal Chemistry | 2014
Valeria Famiglini; Giuseppe La Regina; Antonio Coluccia; Sveva Pelliccia; Andrea Brancale; Giovanni Maga; Emmanuele Crespan; Roger Badia; Eva Riveira-Muñoz; José A. Esté; Rosella Ferretti; Roberto Cirilli; Claudio Zamperini; Maurizio Botta; Dominique Schols; Vittorio Limongelli; Bruno D’Agostino; Ettore Novellino; Romano Silvestri
We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.
Journal of Medicinal Chemistry | 2013
Valeria La Pietra; Giuseppe La Regina; Antonio Coluccia; Valeria Famiglini; Sveva Pelliccia; Batya Plotkin; Hagit Eldar-Finkelman; Andrea Brancale; Carlo Ballatore; Alex Crowe; Kurt R. Brunden; Luciana Marinelli; Ettore Novellino; Romano Silvestri
Compound 5 was selected from our in-house library as a suitable starting point for the rational design of new GSK-3β inhibitors. MC/FEP calculations of 5 led to the identification of a structural class of new GSK-3β inhibitors. Compound 18 inhibited GSK-3β with an IC50 of 0.24 μM and inhibited tau phosphorylation in a cell-based assay. It proved to be a selective inhibitor of GSK-3 against a panel of 17 kinases and showed >10-fold selectivity against CDK2. Calculated physicochemical properties and Volsurf predictions suggested that compound 18 has the potential to diffuse passively across the blood-brain barrier.
Journal of Medicinal Chemistry | 2015
Giuseppe La Regina; Ruoli Bai; Antonio Coluccia; Valeria Famiglini; Sveva Pelliccia; Sara Passacantilli; Carmela Mazzoccoli; Vitalba Ruggieri; Annalisa Verrico; Andrea Miele; Ludovica Monti; Marianna Nalli; Romina Alfonsi; Lucia Di Marcotullio; Alberto Gulino; Biancamaria Ricci; Alessandra Soriani; Angela Santoni; Michele Caraglia; Stefania Porto; Eleonora Da Pozzo; Claudia Martini; Andrea Brancale; Luciana Marinelli; Ettore Novellino; Stefania Vultaggio; Mario Varasi; Ciro Mercurio; Chiara Bigogno; Giulio Dondio
We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethoxyphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4-7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20-50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer.
European Journal of Medicinal Chemistry | 2014
Valeria Famiglini; Giuseppe La Regina; Antonio Coluccia; Sveva Pelliccia; Andrea Brancale; Giovanni Maga; Emmanuele Crespan; Roger Badia; Bonaventura Clotet; José A. Esté; Roberto Cirilli; Ettore Novellino; Romano Silvestri
New indolylarylsulfone HIV-1 NNRTIs were synthesized to evaluate unexplored substitutions of the benzyl/phenylethyl group linked at the indole-2-carboxamide. Against the NL4-3 HIV-1 WT strain, 17 out 20 compounds were superior to NVP and EFV. Several compounds inhibited the K103N HIV-1 mutant strain at nanomolar concentration and were superior to EFV. Some derivatives were superior to EFV against the Y181C and L100I HIV-1 mutant strains. Against the NL4-3 HIV-1 strain, the enantiomers 24 and 25 showed small differences of activity. In contrast, 24 turned out significantly more potent than 25 against the whole panel of mutant HIV-1 strains. The docking studies suggested that the difference in the observed inhibitory activities of 24 and 25 against the K03N mutation could be due to a kinetic rather than affinity differences.
European Journal of Medicinal Chemistry | 2015
Dinesh Manvar; Sveva Pelliccia; Giuseppe La Regina; Valeria Famiglini; Antonio Coluccia; Anna Ruggieri; Simona Anticoli; Jin Ching Lee; Amartya Basu; Ozge Cevik; Lucia Nencioni; Anna Teresa Palamara; Claudio Zamperini; Maurizio Botta; Johan Neyts; Pieter Leyssen; Neerja Kaushik-Basu; Romano Silvestri
We report here the synthesis and mechanism of inhibition of pyrazolecarboxamide derivatives as a new class of HCV inhibitors. Compounds 6, 7, 8 and 16 inhibited the subgenomic HCV replicon 1b genotype at EC50 values between 5 and 8 μM and displayed an even higher potency against the infectious Jc1 HCV 2a genotype. Compound 6 exhibited an EC50 of 6.7 μM and selectivity index of 23 against HCV 1b, and reduced the RNA copies of the infectious Jc1 chimeric 2a clone by 82% at 7 μM. Evaluation of the mode of anti-HCV activity of 6 revealed that it suppressed HCV-induced COX-2 mRNA and protein expression, displaying an IC50 of 3.2 μM in COX-2 promoter-linked luciferase reporter assay. Conversely, the anti-HCV activity of 6 was abrogated upon over-expression of COX-2. These findings suggest that 6 as a representative of these pyrazolecarboxamides function as anti-HCV agents via targeting COX-2 at both the transcription and translation levels.
PLOS ONE | 2014
Cecilia Mannironi; Marco Proietto; Francesca Bufalieri; Enrico Cundari; Angela Alagia; Svetlana Danovska; Teresa Rinaldi; Valeria Famiglini; Antonio Coluccia; Giuseppe La Regina; Romano Silvestri; Rodolfo Negri
Background Histone demethylases (HDMs) have a prominent role in epigenetic regulation and are emerging as potential therapeutic cancer targets. The search for small molecules able to inhibit HDMs in vivo is very active but at the present few compounds were found to be specific for defined classes of these enzymes. Methodology/Principal Findings In order to discover inhibitors specific for H3K4 histone demethylation we set up a screening system which tests the effects of candidate small molecule inhibitors on a S.cerevisiae strain which requires Jhd2 demethylase activity to efficiently grow in the presence of rapamycin. In order to validate the system we screened a library of 45 structurally different compounds designed as competitive inhibitors of α -ketoglutarate (α-KG) cofactor of the enzyme, and found that one of them inhibited Jhd2 activity in vitro and in vivo. The same compound effectively inhibits human Jumonji AT-Rich Interactive Domain (JARID) 1B and 1D in vitro and increases H3K4 tri-methylation in HeLa cell nuclear extracts (NEs). When added in vivo to HeLa cells, the compound leads to an increase of tri-methyl-H3K4 (H3K4me3) but does not affect H3K9 tri-methylation. We describe the cytostatic and toxic effects of the compound on HeLa cells at concentrations compatible with its inhibitory activity. Conclusions/Significance Our screening system is proved to be very useful in testing putative H3K4-specific HDM inhibitors for the capacity of acting in vivo without significantly altering the activity of other important 2-oxoglutarate oxygenases.