Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valeria Petronilli is active.

Publication


Featured researches published by Valeria Petronilli.


Journal of Biological Chemistry | 2005

Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D

Emy Basso; Lisa Fante; Jonathan Fowlkes; Valeria Petronilli; Michael Forte; Paolo Bernardi

We have studied the properties of the permeability transition pore (PTP) in mitochondria from the liver of mice where the Ppif gene encoding for mitochondrial Cyclophilin D (CyP-D) had been inactivated. Mitochondria from Ppif–/– mice had no CyP-D and displayed a striking desensitization of the PTP to Ca2+, in that pore opening required about twice the Ca2+ load necessary to open the pore in strain-matched, wild-type mitochondria. Mitochondria lacking CyP-D were insensitive to Cyclosporin A (CsA), which increased the Ca2+ retention capacity only in mitochondria from wild-type mice. The PTP response to ubiquinone 0, depolarization, pH, adenine nucleotides, and thiol oxidants was similar in mitochondria from wild-type and Ppif–/– mice. These experiments demonstrate that (i) the PTP can form and open in the absence of CyP-D, (ii) that CyP-D represents the target for PTP inhibition by CsA, and (iii) that CyP-D modulates the sensitivity of the PTP to Ca2+ but not its regulation by the proton electrochemical gradient, adenine nucleotides, and oxidative stress. These results have major implications for our current understanding of the PTP and its modulation in vitro and in vivo.


Biophysical Journal | 1999

Transient and Long-Lasting Openings of the Mitochondrial Permeability Transition Pore Can Be Monitored Directly in Intact Cells by Changes in Mitochondrial Calcein Fluorescence

Valeria Petronilli; Giovanni Miotto; Marcella Canton; Marisa Brini; Raffaele Colonna; Paolo Bernardi; Fabio Di Lisa

The occurrence and the mode of opening of the mitochondrial permeability transition pore (MTP) were investigated directly in intact cells by monitoring the fluorescence of mitochondrial entrapped calcein. When MH1C1 cells and hepatocytes were loaded with calcein AM, calcein was also present within mitochondria, because (i) its mitochondrial signal was quenched by the addition of tetramethylrhodamine methyl ester and (ii) calcein-loaded mitochondria could be visualized after digitonin permeabilization. Under the latter condition, the addition of Ca2+ induced a prompt and massive release of the accumulated calcein, which was prevented by CsA, indicating that calcein release could, in principle, probe MTP opening in intact cells as well. To study this process, we developed a procedure by which the cytosolic calcein signal was quenched by Co2+. In hepatocytes and MH1C1 cells coloaded with Co2+ and calcein AM, treatment with MTP inducers caused a rapid, though limited, decrease in mitochondrial calcein fluorescence, which was significantly reduced by CsA. We also observed a constant and spontaneous decrease in mitochondrial calcein fluorescence, which was completely prevented by CsA. Thus MTP likely fluctuates rapidly between open and closed states in intact cells.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Dimers of mitochondrial ATP synthase form the permeability transition pore

Valentina Giorgio; Sophia von Stockum; Manuela Antoniel; Astrid Fabbro; Michael Forte; Gary D. Glick; Valeria Petronilli; Mario Zoratti; Ildikò Szabò; Giovanna Lippe; Paolo Bernardi

Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the FOF1 ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca2+ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca2+. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca2+, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg2+/ADP. These results indicate that the PTP forms from dimers of the ATP synthase.


FEBS Journal | 2006

The mitochondrial permeability transition from in vitro artifact to disease target

Paolo Bernardi; Alexandra Krauskopf; Emy Basso; Valeria Petronilli; Elizabeth Blalchy‐Dyson; Fabio Di Lisa; Michael Forte

The mitochondrial permeability transition pore is a high conductance channel whose opening leads to an increase of mitochondrial inner membrane permeability to solutes with molecular masses up to ≈ 1500 Da. In this review we trace the rise of the permeability transition pore from the status of in vitro artifact to that of effector mechanism of cell death. We then cover recent results based on genetic inactivation of putative permeability transition pore components, and discuss their meaning for our understanding of pore structure. Finally, we discuss evidence indicating that the permeability transition pore plays a role in pathophysiology, with specific emphasis on in vivo models of disease.


Journal of Bioenergetics and Biomembranes | 1996

The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal

Paolo Bernardi; Valeria Petronilli

Mitochondria from a variety of sources possess an inner membrane channel, the permeability transition pore. The pore is a voltage-dependent channel, activated by matrix Ca2+ and inhibited by matrix H+, which can be blocked by cyclosporin A, presumably after binding to mitochondrial cyclophilin. The physiological function of the permeability transition pore remains unknown. Here we evaluate its potential role as a fast Ca2+ release channel involved in mitochondrial and cellular Ca2+ homeostasis. We (i) discuss the theoretical and experimental reasons why mitochondria need a fast, inducible Ca2+ release channel; (ii) analyze the striking analogies between the mitochondrial permeability transition pore and the sarcoplasmic reticulum ryanodine receptor-Ca2+ release channel; (iii) argue that the permeability transition pore can act as a selective release channel for Ca2+ despite its apparent lack of selectivity for the transported speciesin vitro; and (iv) discuss the importance of mitochondria in cellular Ca2+ homeostasis, and how disruption of this function could impinge upon cell viability, particularly under conditions of oxidative stress.


Trends in Biochemical Sciences | 2001

A mitochondrial perspective on cell death

Paolo Bernardi; Valeria Petronilli; Fabio Di Lisa; Michael Forte

The role of mitochondria as crucial participants in cell death programs is well established, yet the mechanisms responsible for the release of mitochondrial activators and the role of BCL2 family proteins in this process remain controversial. Here, we point out the limitations of current approaches used to monitor the physiological responses of mitochondria during cell death, the implications arising from modern views of mitochondrial structure, and briefly assess two proposed mechanisms for the release of mitochondrial proteins during apoptosis.


Journal of Biological Chemistry | 2001

The Mitochondrial Permeability Transition, Release of Cytochrome c and Cell Death CORRELATION WITH THE DURATION OF PORE OPENINGS IN SITU

Valeria Petronilli; Daniele Penzo; Luca Scorrano; Paolo Bernardi; Fabio Di Lisa

We investigated the relationship between opening of the permeability transition pore (PTP), mitochondrial depolarization, cytochrome c release, and occurrence of cell death in rat hepatoma MH1C1 cells. Treatment with arachidonic acid or A23187 induces PTP opening in situ with similar kinetics, as assessed by the calcein loading-Co2+ quenching technique (Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999) Biophys. J. 76, 725–734). Yet depolarization, as assessed from the changes of mitochondrial tetramethylrhodamine methyl ester (TMRM) fluorescence, is rapid and extensive with arachidonic acid and slow and partial withA23187. Cyclosporin A-inhibitable release of cytochrome cand cell death correlate with the changes of TMRM fluorescence but not with those of calcein fluorescence. Since pore opening must be accompanied by depolarization, we conclude that short PTP openings are detected only by trapped calcein and may have little impact on cell viability, while changes of TMRM distribution require longer PTP openings, which cause release of cytochrome c and may result in cell death. Modulation of the open time appears to be the key element in determining the outcome of stimuli that converge on the PTP.


PLOS ONE | 2008

Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels

Federica Chiara; Diego Castellaro; Oriano Marin; Valeria Petronilli; William S. A. Brusilow; Magdalena Juhaszova; Steven J. Sollott; Michael Forte; Paolo Bernardi; Andrea Rasola

Type II hexokinase is overexpressed in most neoplastic cells, and it mainly localizes on the outer mitochondrial membrane. Hexokinase II dissociation from mitochondria triggers apoptosis. The prevailing model postulates that hexokinase II release from its mitochondrial interactor, the voltage-dependent anion channel, prompts outer mitochondrial membrane permeabilization and the ensuing release of apoptogenic proteins, and that these events are inhibited by growth factor signalling. Here we show that a hexokinase II N-terminal peptide selectively detaches hexokinase II from mitochondria and activates apoptosis. These events are abrogated by inhibiting two established permeability transition pore modulators, the adenine nucleotide translocator or cyclophilin D, or in cyclophilin D knock-out cells. Conversely, insulin stimulation or genetic ablation of the voltage-dependent anion channel do not affect cell death induction by the hexokinase II peptide. Therefore, hexokinase II detachment from mitochondria transduces a permeability transition pore opening signal that results in cell death and does not require the voltage-dependent anion channel. These findings have profound implications for our understanding of the pathways of outer mitochondrial membrane permeabilization and their inactivation in tumors.


Journal of Biological Chemistry | 2001

Arachidonic Acid Causes Cell Death through the Mitochondrial Permeability Transition IMPLICATIONS FOR TUMOR NECROSIS FACTOR-α APOPTOTIC SIGNALING

Luca Scorrano; Daniele Penzo; Valeria Petronilli; Francesco Pagano; Paolo Bernardi

We have investigated the effects of arachidonic and palmitic acids in isolated rat liver mitochondria and in rat hepatoma MH1C1 cells. We show that both compounds induce the mitochondrial permeability transition (PT). At variance from palmitic acid, however, arachidonic acid causes a PT at concentrations that do not cause PT-independent depolarization or respiratory inhibition, suggesting a specific effect on the PT pore. When added to intact MH1C1 cells, arachidonic acid but not palmitic acid caused a mitochondrial PTin situ that was accompanied by cytochrome crelease and rapidly followed by cell death. All these effects of arachidonic acid could be prevented by cyclosporin A but not by the phospholipase A2 inhibitor aristolochic acid. In contrast, tumor necrosis factor α caused phospholipid hydrolysis, induction of the PT, cytochrome c release, and cell death that could be inhibited by both cyclosporin A and aristolochic acid. These findings suggest that arachidonic acid produced by cytosolic phospholipase A2 may be a mediator of tumor necrosis factor α cytotoxicity in situ through induction of the mitochondrial PT.


FEBS Letters | 1989

The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria

Valeria Petronilli; Ildikò Szabò; Mario Zoratti

Patch‐clamp experiments were performed on rat liver mitochondria inner membranes. Application of voltage gradients of either polarity revealed the presence of several different conductances, ranging up to 1.3 nS in symmetrical 150 mM KCl. Evidence is presented that at least those higher than 0.3 nS are substates of the highest conductance channel. Increasing matrix‐side‐positive (unphysiological) transmembrane voltage gradients favored the switch of the 1.3 nS channel to operation in lower conductance states. The size of these conductances, the presence of substates and the channel behavior are strongly reminiscent on one hand of the observations on the membrane of protoplasts from the gram‐positive bacterium Streptococcus faecalis, [Zoratti M. and Petronilli V. (1988) FEBS Lett. 240, 105‐109], and on the other of some properties of previously described channels of mitochondrial origin.

Collaboration


Dive into the Valeria Petronilli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge