Valeria Poli
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valeria Poli.
Science | 1996
Drew E. Cressman; Linda E. Greenbaum; Robert A. DeAngelis; Gennaro Ciliberto; Emma E. Furth; Valeria Poli; Rebecca Taub
Liver regeneration stimulated by a loss of liver mass leads to hepatocyte and nonparenchymal cell proliferation and rapid restoration of liver parenchyma. Mice with targeted disruption of the interleukin-6 (IL-6) gene had impaired liver regeneration characterized by liver necrosis and failure. There was a blunted DNA synthetic response in hepatocytes of these mice but not in nonparenchymal liver cells. Furthermore, there were discrete G1 phase (prereplicative stage in the cell cycle) abnormalities including absence of STAT3 (signal transducer and activator of transcription protein 3) activation and depressed AP-1, Myc, and cyclin D1 expression. Treatment of IL-6-deficient mice with a single preoperative dose of IL-6 returned STAT3 binding, gene expression, and hepatocyte proliferation to near normal and prevented liver damage, establishing that IL-6 is a critical component of the regenerative response.
Immunity | 1997
Maria Romano; Marina Sironi; Carlo Toniatti; Nadia Polentarutti; Paolo Fruscella; Pietro Ghezzi; Raffaella Faggioni; Walter Luini; Victor van Hinsbergh; Silvano Sozzani; Federico Bussolino; Valeria Poli; Gennaro Ciliberto; Alberto Mantovani
IL-6-/- mice showed impaired leukocyte accumulation in subcutaneous air pouches. Defective leukocyte accumulation was not due to a reduced migratory capacity of IL-6-/- leukocytes and was associated with a reduced in situ production of chemokines. These observations led to a reexamination of the interaction of IL-6 with endothelial cells (EC). EC express only the gp130 signal transducing chain and not the subunit-specific IL-6R and are therefore unresponsive to IL-6. However, EC are responsive to a combination of IL-6 and soluble IL-6R as measured by the activation of STAT3, chemokine expression, and augmentation of ICAM-1. Activation by IL-6-IL-6R complexes was inhibited by an IL-6 receptor antagonist and potentiated by a superagonist. Hence, in vivo and in vitro evidence supports the concept that the IL-6 system plays an unexpected positive role in local inflammatory reactions by amplifying leukocyte recruitment.
The EMBO Journal | 1994
Valeria Poli; Raffaella Balena; Elena Fattori; Angelo Markatos; Michiko Yamamoto; Hirofumi Tanaka; Gennaro Ciliberto; Gideon A. Rodan; Frank Costantini
Interleukin‐6 (IL‐6) is a multifunctional cytokine whose circulating levels are under physiological conditions below detection, but whose production is rapidly and strongly induced by several pathological and inflammatory stimuli. IL‐6 has been implicated in a number of cell functions connected to immunity and hematopoiesis. Recently, it has been proposed to act as a stimulator of osteoclast formation and activity, in particular following estrogen depletion. The purpose of this study was to gain additional insights into the role of IL‐6 during development, as well as in physiological and pathological conditions. We report here that IL‐6 deficient mice generated by gene targeting are viable and do not present any evident phenotypic abnormality. However, analysis of bone metabolism revealed a specific bone phenotype. IL‐6 deficient female mice have a normal amount of trabecular bone, but higher rates of bone turnover than control littermates. Estrogen deficiency induced by ovariectomy causes in wild type animals a significant loss of bone mass together with an increase in bone turnover rates. Strikingly, ovariectomy does not induce any change in either bone mass or bone remodeling rates in the IL‐6 deficient mice. These findings indicate that IL‐6 plays an important role in the local regulation of bone turnover and, at least in mice, appears to be essential for the bone loss caused by estrogen deficiency.
Journal of Biological Chemistry | 1998
Valeria Poli
CAAT/enhancer-binding proteins (C/EBPs) are a family of leucine zipper transcription factors involved in the regulation of various aspects of cellular differentiation and function in multiple tissues. Six different members of the family have been isolated and characterized (C/EBPa to z), all sharing a strong homology in the carboxyl-terminal domain, which carries a basic DNA-binding domain and a leucine zipper motif. The general characteristics and patterns of expression of the C/EBP family have been described in the first minireview of this series (1). Here I will focus on the functions of several C/EBP family members in regulating various aspects of inflammation and immunity in the liver and in cells of the myelomonocytic lineage, in vitro as well as in vivo.
Cell | 2007
Denise Hilfiker-Kleiner; Karol A. Kamiński; Edith Podewski; Tomasz Bonda; Arnd Schaefer; Karen Sliwa; Olaf Forster; Anja Quint; Ulf Landmesser; Carola Doerries; Maren Luchtefeld; Valeria Poli; Michael D. Schneider; Jean-Luc Balligand; Fanny Desjardins; Aftab A. Ansari; Ingrid Struman; Ngoc Quynh Nhu Nguyen; Nils H. Zschemisch; Gunnar Klein; Gerd Heusch; Rainer Schulz; Andres Hilfiker; Helmut Drexler
Postpartum cardiomyopathy (PPCM) is a disease of unknown etiology and exposes women to high risk of mortality after delivery. Here, we show that female mice with a cardiomyocyte-specific deletion of stat3 develop PPCM. In these mice, cardiac cathepsin D (CD) expression and activity is enhanced and associated with the generation of a cleaved antiangiogenic and proapoptotic 16 kDa form of the nursing hormone prolactin. Treatment with bromocriptine, an inhibitor of prolactin secretion, prevents the development of PPCM, whereas forced myocardial generation of 16 kDa prolactin impairs the cardiac capillary network and function, thereby recapitulating the cardiac phenotype of PPCM. Myocardial STAT3 protein levels are reduced and serum levels of activated CD and 16 kDa prolactin are elevated in PPCM patients. Thus, a biologically active derivative of the pregnancy hormone prolactin mediates PPCM, implying that inhibition of prolactin release may represent a novel therapeutic strategy for PPCM.
Cell | 1990
Valeria Poli; Francesco Paolo Mancini; Riccardo Cortese
We analyzed a family of proteins from hepatoma cell nuclei that bind to interleukin-6 responsive elements (IL-6REs) of several acute-phase genes. This family is characterized by leucine zipper domains compatible with that of the CCAAT/enhancer binding protein (C/EBP). A cDNA clone coding for a member of the family, IL-6DBP, was isolated; it is strongly homologous to C/EBP in the region of the basic domain and in the leucine zipper sequence. IL-6DBP and C/EBP can interact in vitro to form heterodimers that bind to DNA with the same specificity as the respective homodimers, and they can interact functionally in vivo. Both the DNA binding activity and the trans-activating capacity of IL-6DBP are induced in hepatoma cells by treatment with IL-6 through a posttranslational mechanism, implicating it as a nuclear target of IL-6 and as a mediator of the IL-6-dependent transcriptional activation of liver genes during the acute-phase response.
Journal of Clinical Investigation | 1997
F De Benedetti; Tonino Alonzi; A Moretta; Domenico Lazzaro; Patrizia Costa; Valeria Poli; Alberto Martini; Gennaro Ciliberto; Elena Fattori
Stunted growth is a major complication of chronic inflammation and recurrent infections in children. Systemic juvenile rheumatoid arthritis is a chronic inflammatory disorder characterized by markedly elevated circulating levels of IL-6 and stunted growth. In this study we found that NSE/hIL-6 transgenic mouse lines expressing high levels of circulating IL-6 since early after birth presented a reduced growth rate that led to mice 50-70% the size of nontransgenic littermates. Administration of a monoclonal antibody to the murine IL-6 receptor partially reverted the growth defect. In NSE/hIL-6 transgenic mice, circulating IGF-I levels were significantly lower than those of nontransgenic littermates; on the contrary, the distribution of growth hormone pituitary cells, as well as circulating growth hormone levels, were normal. Treatment of nontransgenic mice of the same strain with IL-6 resulted in a significant decrease in IGF-I levels. Moreover, in patients with systemic juvenile rheumatoid arthritis, circulating IL-6 levels were negatively correlated with IGF-I levels. Our findings suggest that IL-6-mediated decrease in IGF-I production represents a major mechanism by which chronic inflammation affects growth.
Circulation Research | 2004
Denise Hilfiker-Kleiner; Andres Hilfiker; Martin Fuchs; Karol A. Kamiński; Arnd Schaefer; Bernhard Schieffer; Anja Hillmer; Andreas Schmiedl; Zhaoping Ding; Edith Podewski; Eva Podewski; Valeria Poli; Michael D. Schneider; Rainer Schulz; Joon-Keun Park; Kai C. Wollert; Helmut Drexler
The transcription factor signal transducer and activator of transcription 3 (STAT3) participates in a wide variety of physiological processes and directs seemingly contradictory responses such as proliferation and apoptosis. To elucidate its role in the heart, we generated mice harboring a cardiomyocyte-restricted knockout of STAT3 using Cre/loxP–mediated recombination. STAT3-deficient mice developed reduced myocardial capillary density and increased interstitial fibrosis within the first 4 postnatal months, followed by dilated cardiomyopathy with impaired cardiac function and premature death. Conditioned medium from STAT3-deficient cardiomyocytes inhibited endothelial cell proliferation and increased fibroblast proliferation, suggesting the presence of paracrine factors attenuating angiogenesis and promoting fibrosis in vitro. STAT3-deficient mice showed enhanced susceptibility to myocardial ischemia/reperfusion injury and infarction with increased cardiac apoptosis, increased infarct sizes, and reduced cardiac function and survival. Our study establishes a novel role for STAT3 in controlling paracrine circuits in the heart essential for postnatal capillary vasculature maintenance, interstitial matrix deposition balance, and protection from ischemic injury and heart failure.
Molecular and Cellular Biology | 2001
Tonino Alonzi; Diego Maritano; Barbara Gorgoni; Gabriella Rizzuto; Claude Libert; Valeria Poli
ABSTRACT We generated mice carrying a STAT3 allele amenable to Cre-mediated deletion and intercrossed them with Mx-Cre transgenic mice, in which the expression of Cre recombinase can be induced by type I interferon. Interferon-induced deletion of STAT3 occurred very efficiently (more than 90%) in the liver and slightly less efficiently (about 70%) in the bone marrow. Analysis of the induction of liver acute-phase genes in response to bacterial lipopolysaccharide unequivocally identifies STAT3 as a fundamental mediator of their induction. The different degrees of defectiveness displayed by the various genes allowed us to differentiate them into three separate groups according to their degree of dependence on STAT3. Induction was totally defective for group I genes, defective at 24 h but almost normal at earlier time points for group II genes, and only slightly defective for group III genes. This division was in good agreement with the known structures of the respective promoters. We also found that the overall induction of the transcription factors C/EBPβ and -δ was only minimally defective in the absence of STAT3. Finally, even though corticosterone levels and action were found to be normal in the conditional-mutant mice, production of both proinflammatory and antiinflammatory cytokines was increased and prolonged, probably as a result of STAT3 deletion in macrophages.
Journal of Clinical Investigation | 1998
Linda E. Greenbaum; Wei Li; Drew E. Cressman; Yong Peng; Gennaro Ciliberto; Valeria Poli; Rebecca Taub
After two-thirds hepatectomy, normally quiescent liver cells are stimulated to reenter the cell cycle and proliferate to restore the original liver mass. The level of bZIP transcription factor CCAAT enhancer-binding protein beta (C/EBPbeta) increases in the liver during the period of cell proliferation. The significance of this change in C/EBP expression is not understood. To determine the role of C/EBPbeta in the regenerating liver, we examined the regenerative response after partial hepatectomy in mice that contain a targeted disruption of the C/EBPbeta gene. Posthepatectomy, hepatocyte DNA synthesis was decreased to 25% of normal in C/EBPbeta -/- mice. The reduced regenerative response was associated with a prolonged period of hypoglycemia that was independent of expression of C/EBPalpha protein and gluconeogenic genes. C/EBPbeta -/- livers showed reduced expression of immediate-early growth-control genes including the Egr-1 transcription factor, mitogen-activated protein kinase protein tyrosine phosphatase (MKP-1), and HRS, a delayed-early gene that encodes an mRNA splicing protein. Cyclin B and E gene expression were dramatically reduced in C/EBPbeta -/- livers whereas cyclin D1 expression was normal. The abnormalities in immediate-early gene expression in C/EBPbeta -/- livers were distinct from those seen in IL-6 -/- livers. These data link C/EBPbeta to the activation of metabolic and growth response pathways in the regenerating liver and demonstrate that C/EBPbeta is required for a normal proliferative response.