Valeria Rachela Villella
European Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valeria Rachela Villella.
Nature Cell Biology | 2010
Alessandro Luciani; Valeria Rachela Villella; Speranza Esposito; Nicola Brunetti-Pierri; Diego L. Medina; Carmine Settembre; Manuela Gavina; Laura Pulze; Ida Giardino; Massimo Pettoello-Mantovani; Maria D'Apolito; Stefano Guido; Eliezer Masliah; Brian Spencer; Sonia Quaratino; Valeria Raia; Andrea Ballabio; Luigi Maiuri
Accumulation of unwanted/misfolded proteins in aggregates has been observed in airways of patients with cystic fibrosis (CF), a life-threatening genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show how the defective CFTR results in defective autophagy and decreases the clearance of aggresomes. Defective CFTR-induced upregulation of reactive oxygen species (ROS) and tissue transglutaminase (TG2) drive the crosslinking of beclin 1, leading to sequestration of phosphatidylinositol-3-kinase (PI(3)K) complex III and accumulation of p62, which regulates aggresome formation. Both CFTR knockdown and the overexpression of green fluorescent protein (GFP)-tagged-CFTRF508del induce beclin 1 downregulation and defective autophagy in non-CF airway epithelia through the ROS–TG2 pathway. Restoration of beclin 1 and autophagy by either beclin 1 overexpression, cystamine or antioxidants rescues the localization of the beclin 1 interactome to the endoplasmic reticulum and reverts the CF airway phenotype in vitro, in vivo in Scnn1b-transgenic and CftrF508del homozygous mice, and in human CF nasal biopsies. Restoring beclin 1 or knocking down p62 rescued the trafficking of CFTRF508del to the cell surface. These data link the CFTR defect to autophagy deficiency, leading to the accumulation of protein aggregates and to lung inflammation.
Frontiers in Pharmacology | 2013
Valeria Rachela Villella; Speranza Esposito; Emanuela M. Bruscia; Maria Chiara Maiuri; Valeria Raia; Guido Kroemer; Luigi Maiuri
Cystic fibrosis (CF) patients harboring the most common deletion mutation of the CF transmembrane conductance regulator (CFTR), F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane (PM)-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the PM even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1), a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the PM. We focus on the relationship between the improvement of peripheral proteostasis and CFTR PM stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent pre-clinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation.
Journal of Immunology | 2008
Luigi Maiuri; Alessandro Luciani; Ida Giardino; Valeria Raia; Valeria Rachela Villella; Maria D'Apolito; Massimo Pettoello-Mantovani; Stfano Guido; Carolina Ciacci; Mariano Cimmino; Olivier Cexus; Marco Londei; Sonia Quaratino
Cystic fibrosis (CF), the most common life-threatening inherited disease in Caucasians, is due to mutations in the CF transmembrane conductance regulator (CFTR) gene and is characterized by airways chronic inflammation and pulmonary infections. The inflammatory response is not secondary to the pulmonary infections. Indeed, several studies have shown an increased proinflammatory activity in the CF tissues, regardless of bacterial infections, because inflammation is similarly observed in CFTR-defective cell lines kept in sterile conditions. Despite recent studies that have indicated that CF airway epithelial cells can spontaneously initiate the inflammatory cascade, we still do not have a clear insight of the molecular mechanisms involved in this increased inflammatory response. In this study, to understand these mechanisms, we investigated ex vivo cultures of nasal polyp mucosal explants of CF patients and controls, CFTR-defective IB3-1 bronchial epithelial cells, C38 isogenic CFTR corrected, and 16HBE normal bronchial epithelial cell lines. We have shown that a defective CFTR induces a remarkable up-regulation of tissue transglutaminase (TG2) in both tissues and cell lines. The increased TG2 activity leads to functional sequestration of the anti-inflammatory peroxisome proliferator-activated receptor γ and increase of the classic parameters of inflammation, such as TNF-α, tyrosine phosphorylation, and MAPKs. Specific inhibition of TG2 was able to reinstate normal levels of peroxisome proliferator-activated receptor-γ and dampen down inflammation both in CF tissues and CFTR-defective cells. Our results highlight an unpredicted central role of TG2 in the mechanistic pathway of CF inflammation, also opening a possible new wave of therapies for sufferers of chronic inflammatory diseases.
Gut | 2010
Alessandro Luciani; Valeria Rachela Villella; Angela Vasaturo; Ida Giardino; Massimo Pettoello-Mantovani; Stefano Guido; Olivier Cexus; Nick Peake; Marco Londei; Sonia Quaratino; Luigi Maiuri
Background An unresolved question in coeliac disease is to understand how some toxic gliadin peptides, in particular p31–43, can initiate an innate response and lead to tissue transglutaminase (TG2) upregulation in coeliac intestine and gliadin sensitive epithelial cell lines. Aim We addressed whether the epithelial uptake of p31–43 induces an intracellular pro-oxidative envoronment favouring TG2 activation and leading to the innate immune response. Methods The time course of intracellular delivery to lysosomes of p31–43, pα-2 or pα-9 gliadin peptides was analysed in T84 and Caco-2 epithelial cells. The effects of peptide challenge on oxidative stress, TG2 and peroxisome proliferator-activated receptor (PPAR)γ ubiquitination and p42/44–mitogen activated protein (MAP) kinase or tyrosine phosphorylation were investigated in cell lines and cultured coeliac disease biopsies with/without anti-oxidant treatment or TG2 gene silencing by immunoprecipitation, western blot, confocal microscopy and Fluorenscence Transfer Resonance Energy (FRET) analysis. Results After 24 h of challenge p31–43, but not pα-2 or pα-9, is still retained within LAMP1-positive perinuclear vesicles and leads to increased levels of reactive oxygen species (ROS) that inhibit TG2 ubiquitination and lead to increases of TG2 protein levels and activation. TG2 induces cross-linking, ubiquitination and proteasome degradation of PPARγ. Treatment with the antioxidant EUK-134 as well as TG2 gene silencing restored PPARγ levels and reversed all monitored signs of innate activation, as indicated by the dramatic reduction of tyrosine and p42/p44 phosphorylation. Conclusion p31–43 accumulation in lysosomes leads to epithelial activation via the ROS–TG2 axis. TG2 works as a rheostat of ubiquitination and proteasome degradation and drives inflammation via PPARγ downregulation.
Autophagy | 2014
Daniela De Stefano; Valeria Rachela Villella; Speranza Esposito; A. Tosco; Angela Sepe; Fabiola De Gregorio; Laura Salvadori; Rosa Grassia; Carlo Antonio Leone; Giuseppe De Rosa; Maria Chiara Maiuri; Massimo Pettoello-Mantovani; Stefano Guido; Anna Bossi; Anna Zolin; Andrea Venerando; Lorenzo A. Pinna; Anil Mehta; Gianni Bona; Guido Kroemer; Luigi Maiuri; Valeria Raia
Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in CftrF508del homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the F508del-CFTR mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from F508del homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both in vivo, in mice, and in vitro, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 F508del-CFTR homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells in vivo, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of TNF/TNF-alpha (tumor necrosis factor) and CXCL8 (chemokine [C-X-C motif] ligand 8) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the F508del-CFTR mutation.
Journal of Immunology | 2009
Alessandro Luciani; Valeria Rachela Villella; Angela Vasaturo; Ida Giardino; Valeria Raia; Massimo Pettoello-Mantovani; Maria D'Apolito; Stefano Guido; Teresinha Leal; Sonia Quaratino; Luigi Maiuri
Cystic fibrosis (CF) is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. CF is characterized by chronic bacterial lung infections and inflammation, and we have previously reported that tissue transglutaminase (TG2), a multifunctional enzyme critical to several diseases, is constitutively up-regulated in CF airways and drives chronic inflammation. Here, we demonstrate that the generation of an oxidative stress induced by CFTR-defective function leads to protein inhibitor of activated STAT (PIAS)y-mediated TG2 SUMOylation and inhibits TG2 ubiquitination and proteasome degradation, leading to sustained TG2 activation. This prevents peroxisome proliferator-activated receptor (PPAR)γ and IkBα SUMOylation, leading to NF-κB activation and to an uncontrolled inflammatory response. Cellular homeostasis can be restored by small ubiquitin-like modifier (SUMO)-1 or PIASy gene silencing, which induce TG2 ubiquitination and proteasome degradation, restore PPARγ SUMOylation, and prevent IkBα cross-linking and degradation, thus switching off inflammation. Manganese superoxide dismutase overexpression as well as the treatment with the synthetic superoxide dismutase mimetic EUK-134 control PIASy-TG2 interaction and TG2 SUMOylation. TG2 inhibition switches off inflammation in vitro as well as in vivo in a homozygous F508del-CFTR mouse model. Thus, TG2 may function as a link between oxidative stress and inflammation by driving the decision as to whether a protein should undergo SUMO-mediated regulation or degradation. Targeting TG2-SUMO interactions might represent a new option to control disease evolution in CF patients as well as in other chronic inflammatory diseases, neurodegenerative pathologies, and cancer.
Autophagy | 2012
Alessandro Luciani; Valeria Rachela Villella; Speranza Esposito; Manuela Gavina; Ilaria Russo; Marco Silano; Stefano Guido; Massimo Pettoello-Mantovani; Rosa Carnuccio; Bob J. Scholte; Antonella De Matteis; Maria Chiara Maiuri; Valeria Raia; Alberto Luini; Guido Kroemer; Luigi Maiuri
Channel activators (potentiators) of cystic fibrosis (CF) transmembrane conductance regulator (CFTR), can be used for the treatment of the small subset of CF patients that carry plasma membrane-resident CFTR mutants. However, approximately 90% of CF patients carry the misfolded ΔF508-CFTR and are poorly responsive to potentiators, because ΔF508-CFTR is intrinsically unstable at the plasma membrane (PM) even if rescued by pharmacological correctors. We have demonstrated that human and mouse CF airways are autophagy deficient due to functional sequestration of BECN1 and that the tissue transglutaminase-2 inhibitor, cystamine, or antioxidants restore BECN1-dependent autophagy and reduce SQSTM1/p62 levels, thus favoring ΔF508-CFTR trafficking to the epithelial surface. Here, we investigated whether these treatments could facilitate the beneficial action of potentiators on ΔF508-CFTR homozygous airways. Cystamine or the superoxide dismutase (SOD)/catalase-mimetic EUK-134 stabilized ΔF508-CFTR at the plasma membrane of airway epithelial cells and sustained the expression of CFTR at the epithelial surface well beyond drug withdrawal, overexpressing BECN1 and depleting SQSTM1. This facilitates the beneficial action of potentiators in controlling inflammation in ex vivo ΔF508-CFTR homozygous human nasal biopsies and in vivo in mouse ΔF508-CFTR lungs. Direct depletion of Sqstm1 by shRNAs in vivo in ΔF508-CFTR mice synergized with potentiators in sustaining surface CFTR expression and suppressing inflammation. Cystamine pre-treatment restored ΔF508-CFTR response to the CFTR potentiators genistein, Vrx-532 or Vrx-770 in freshly isolated brushed nasal epithelial cells from ΔF508-CFTR homozygous patients. These findings delineate a novel therapeutic strategy for the treatment of CF patients with the ΔF508-CFTR mutation in which patients are first treated with cystamine and subsequently pulsed with CFTR potentiators.
Autophagy | 2011
Alessandro Luciani; Valeria Rachela Villella; Speranza Esposito; Nicola Brunetti-Pierri; Diego L. Medina; Carmine Settembre; Manuela Gavina; Valeria Raia; Andrea Ballabio; Luigi Maiuri
The accumulation of misfolded and/or ubiquitinated protein aggregates with a perturbation of autophagy has been described in several human pathologies. A sequestration of misfolded cystic fibrosis transmembrane conductance regulator (CFTR) and cross-linked PPARγ has been observed in airway epithelia of cystic fibrosis (CF) patients. CF airways are also characterized by chronic inflammation, pro-oxidative environment and increased transglutaminase 2 (TG2) levels. We showed that defective CFTR drives autophagy inhibition through reactive oxygen species (ROS)-TG2- mediated aggresome sequestration of the Beclin 1 interactome. Rescuing Beclin 1 at the level of the endoplasmic reticulum and autophagy favors clearance of aggresomes, improves CFTR trafficking and ameliorates CF lung inflammation both in vitro and in vivo. Therefore, rescuing autophagy interrupts the vicious cycle linking defective CFTR and lung inflammation and may pave the way to the development of a novel class of drugs for the treatment of CF.
Journal of Immunology | 2013
Ping-Xia Zhang; Thomas S. Murray; Valeria Rachela Villella; Eleonora Ferrari; Speranza Esposito; Anthony D. D'Souza; Valeria Raia; Luigi Maiuri; Diane S. Krause; Marie E. Egan; Emanuela M. Bruscia
We have previously reported that TLR4 signaling is increased in LPS-stimulated cystic fibrosis (CF) macrophages (MΦs), contributing to the robust production of proinflammatory cytokines. The heme oxygenase-1 (HO-1)/CO pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. In this study, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules enhances CAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations re-established HO-1 and CAV-1 cell surface localization in CF MΦs. Consistent with restoration of HO-1/CAV-1–negative regulation of TLR4 signaling, genetic or pharmacological (CO-releasing molecule 2) induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counterregulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1–dependent mechanism, exacerbating the CF MΦ response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease.
Pediatric Pulmonology | 2013
Manuela Gavina; Alessandro Luciani; Valeria Rachela Villella; Speranza Esposito; Eleonora Ferrari; Ilaria Bressani; Alida Casale; Emanuela M. Bruscia; Luigi Maiuri; Valeria Raia
Chronic lung inflammation with increased susceptibility to bacterial infections cause much of the morbidity and mortality in patients with cystic fibrosis (CF), the most common severe, autosomal recessively inherited disease in the Caucasian population. Exogenous inhaled hyaluronan (HA) can exert a protective effect against injury and beneficial effects of HA have been shown in experimental models of chronic respiratory diseases. Our objective was to examine whether exogenous administration of nebulized HA might interfere with lung inflammation in CF.