Valeria Romanelli
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valeria Romanelli.
Genome Research | 2014
Franck Court; Chiharu Tayama; Valeria Romanelli; Alex Martin-Trujillo; Isabel Iglesias-Platas; Kohji Okamura; Naoko Sugahara; Carlos Simón; Harry Moore; Julie V. Harness; Hans S. Keirstead; Jose V. Sanchez-Mut; Eisuke Kaneki; Pablo Lapunzina; Hidenobu Soejima; Norio Wake; Manel Esteller; Tsutomu Ogata; Kenichiro Hata; Kazuhiko Nakabayashi; David Monk
Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.
Human Mutation | 2013
Franck Court; Alex Martin-Trujillo; Valeria Romanelli; Intza Garin; Isabel Iglesias-Platas; Ira S. Salafsky; Miriam Guitart; Guiomar Perez de Nanclares; Pablo Lapunzina; David Monk
Genomic imprinting is the parent‐of‐origin‐specific allelic transcriptional silencing observed in mammals, which is governed by DNA methylation established in the gametes and maintained throughout the development. The frequency and extent of epimutations associated with the nine reported imprinting syndromes varies because it is evident that aberrant preimplantation maintenance of imprinted differentially methylated regions (DMRs) may affect multiple loci. Using a custom Illumina GoldenGate array targeting 27 imprinted DMRs, we profiled allelic methylation in 65 imprinting defect patients. We identify multilocus hypomethylation in numerous Beckwith–Wiedemann syndrome, transient neonatal diabetes mellitus (TNDM), and pseudohypoparathyroidism 1B patients, and an individual with Silver–Russell syndrome. Our data reveal a broad range of epimutations exist in certain imprinting syndromes, with the exception of Prader–Willi syndrome and Angelman syndrome patients that are associated with solitary SNRPN‐DMR defects. A mutation analysis identified a 1 bp deletion in the ZFP57 gene in a TNDM patient with methylation defects at multiple maternal DMRs. In addition, we observe missense variants in ZFP57, NLRP2, and NLRP7 that are not consistent with maternal effect and aberrant establishment or methylation maintenance, and are likely benign. This work illustrates that further extensive molecular characterization of these rare patients is required to fully understand the mechanism underlying the etiology of imprint establishment and maintenance.
American Journal of Medical Genetics Part A | 2010
Valeria Romanelli; Alberta Belinchón; Sara Benito-Sanz; Víctor Martínez-Glez; Ricardo Gracia-Bouthelier; Karen E. Heath; Angel Campos-Barros; Sixto García-Miñaúr; Luis Venancio Oceja Fernández; Heloisa Meneses; Juan Pedro López-Siguero; Encarna Guillén-Navarro; Paulino Gómez-Puertas; Jan-Jaap Wesselink; Graciela Mercado; Rebeca Palomo; Rocío Mena; Aurora Sánchez; Miguel del Campo; Pablo Lapunzina
Beckwith–Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by macroglossia, macrosomia, and abdominal wall defects. It is a multigenic disorder caused in most patients by alterations in growth regulatory genes. A small number of individuals with BWS (5–10%) have mutations in CDKN1C, a cyclin‐dependent kinase inhibitor of G1 cyclin complexes that functions as a negative regulator of cellular growth and proliferation. Here, we report on eight patients with BWS and CDKN1C mutations and review previous reported cases. We analyzed 72 patients (50 BWS, 17 with isolated hemihyperplasia (IH), three with omphalocele, and two with macroglossia) for CDKN1C defects with the aim to search for new mutations and to define genotype–phenotype correlations. Our findings suggest that BWS patients with CDKN1C mutations have a different pattern of clinical malformations than those with other molecular defects. Polydactyly, genital abnormalities, extra nipple, and cleft palate are more frequently observed in BWS with mutations in CDKN1C. The clinical observation of these malformations may help to decide which genetic characterization should be undertaken (i.e., CDKN1C screening), thus optimizing the laboratory evaluation for BWS.
American Journal of Medical Genetics Part A | 2010
Victor Martinez-Glez; Valeria Romanelli; María Ángeles Mori; Ricardo Gracia; Mabel Segovia; Antonio González-Meneses; Juan C. Lopez-Gutierrez; Esther Gean; Loreto Martorell; Pablo Lapunzina
Macrocephaly–capillary malformation (M‐CM) is a genetic syndrome of unknown etiology characterized by an enlarged head circumference and patchy, reticular capillary malformation. We describe the clinical features of 13 cases, report on the genome‐wide Copy Number Variation characterization of these patients, analyze the main clinical features of this syndrome and propose a modification of the current diagnostic criteria: the inclusion of both overgrowth/asymmetry and neuroimaging alterations as major criteria.
European Journal of Human Genetics | 2011
Valeria Romanelli; Heloisa Meneses; Luis Venancio Oceja Fernández; Víctor Martínez-Glez; Ricardo Gracia-Bouthelier; Mario F. Fraga; Encarna Guillén; Julián Nevado; Esther Gean; Loreto Martorell; Victoria Esteban Marfil; Sixto García-Miñaúr; Pablo Lapunzina
Beckwith–Wiedemann syndrome (BWS) is a phenotypically and genotypically heterogeneous overgrowth syndrome characterized by somatic overgrowth, macroglossia and abdominal wall defects. Other usual findings are hemihyperplasia, embryonal tumours, adrenocortical cytomegaly, ear anomalies, visceromegaly, renal abnormalities, neonatal hypoglycaemia, cleft palate, polydactyly and a positive family history. BWS is a complex, multigenic disorder associated, in up to 90% of patients, with alteration in the expression or function of one or more genes in the 11p15.5 imprinted gene cluster. There are several molecular anomalies associated with BWS and the large proportion of cases, about 85%, is sporadic and karyotypically normal. One of the major categories of BWS molecular alteration (10–20% of cases) is represented by mosaic paternal uniparental disomy (pUPD), namely patients with two paternally derived copies of chromosome 11p15 and no maternal contribution for that. In these patients, in addition to the effects of IGF2 overexpression, a decreased level of the maternally expressed gene CDKN1C may contribute to the BWS phenotype. In this paper, we reviewed a series of nine patients with BWS because of pUPD using several methods with the aim to evaluate the percentage of mosaicism, the methylation status at both loci, the extension of the pUPD at the short arm and the breakpoints of recombination. Fine mapping of mitotic recombination breakpoints by single-nucleotide polymorphism-array in individuals with UPD and fine estimation of epigenetic defects will provide a basis for understanding the aetiology of BWS, allowing more accurate prognostic predictions and facilitating management and surveillance of individuals with this disorder.
The Journal of Clinical Endocrinology and Metabolism | 2012
Gustavo Pérez-Nanclares; Valeria Romanelli; Sonia Mayo; Intza Garin; Celia Zazo; Eduardo Fernández-Rebollo; Francisco Venegas Martínez; Pablo Lapunzina
CONTEXT Genomic imprinting is the modification of the genome so that genes from only one (rather than two) of the parental alleles are expressed. The mechanism underlying imprinting is epigenetic, occurring via changes in DNA methylation and histone modifications rather than through alterations in the DNA sequence. To date, nine different imprinting disorders have been clinically and genetically identified and a considerable research effort has been focused on determining the cause of the corresponding methylation defects. OBJECTIVE Our objective was to identify multilocus imprinting defects and characterize any mutations in trans-acting genes in patients with pseudohypoparathyroidism (PHP) caused by epigenetic alterations at GNAS locus. DESIGN We have investigated multilocus imprinting defects in 22 PHP patients with aberrant methylation at the GNAS locus not due to previously described deletions or to paternal uniparental disomy (UPD) of chromosome 20. RESULTS We found that, in contrast to what has been described in growth disorders, multilocus hypomethylation is an uncommon event in PHP patients. We were also unable to identify any genetic alteration causative of the epigenetic defects in the currently known methylation regulatory genes. CONCLUSION Our work suggests that a trans-acting gene regulating the establishment or maintenance of imprinting at GNAS locus, if it exists, should be specific to PHP cases caused by epigenetic defects at GNAS.
Placenta | 2009
Valeria Romanelli; Alberta Belinchón; Angel Campos-Barros; Karen E. Heath; Sixto García-Miñaúr; Víctor Martínez-Glez; Rebeca Palomo; G. Mercado; Ricardo Gracia; Pablo Lapunzina
Preeclampsia is the development of new-onset hypertension with proteinuria after 20 weeks of gestation. HELLP syndrome (haemolysis, elevated liver enzymes, and low platelet count) is a severe form of preeclampsia with high rates of neonatal and maternal morbidity. In recent years, loss of function of cdkn1c (a tight-binding inhibitor of G1 cyclin/cyclin-dependent kinase complexes and a negative regulator of cell proliferation) has been observed in several mouse models of preeclampsia. In this paper, we report on three women with HELLP/preeclampsia who had children with Beckwith Wiedemann syndrome, a complex genetic disorder characterised, among other findings, by overgrowth, omphalocele and macroglossia. All three children displayed mutations in CDKN1C predicted to generate truncated proteins. Two of the mutations were maternally inherited while the third was de novo. This finding suggests a fetal contribution to the maternal disease. To the best of our knowledge this is the first report of CDKN1C mutations in children born to women with preeclampsia/HELLP syndrome, thus suggesting the involvement of an imprinted gene in the pathophysiology of preeclampsia.
Journal of Medical Genetics | 2011
Valeria Romanelli; Julián Nevado; Mario F. Fraga; Alex Martín Trujillo; María A. Mori; Luis Venancio Oceja Fernández; Guiomar Perez de Nanclares; Víctor Martínez-Glez; Guillermo Pita; Heloisa Meneses; Ricardo Gracia; Sixto García-Miñaúr; Purificación García de Miguel; Beatriz Lecumberri; José Ignacio Rodríguez; Anna González Neira; David Monk; Pablo Lapunzina
Molecular studies in a patient with Beckwith–Wiedemann syndrome phenotype who developed two different tumours revealed an unexpected observation of almost complete loss of heterozygosity of all chromosomes. It is shown, by means of numerous molecular methods, that the absence of maternal contribution in somatic cells is due to high-degree (∼85%) genome-wide paternal uniparental disomy (UPD). The observations indicate that the genome-wide UPD results from diploidisation, and have important implications for genetic counselling and tumour surveillance for the growing number of UPD associated imprinting disorders.
Journal of Biological Chemistry | 2012
Cecilio Giménez; Gonzalo Pérez-Siles; Jaime Martínez-Villarreal; Esther Arribas-González; Esperanza Jiménez; Enrique Núñez; Jaime de Juan-Sanz; Enrique Fernández-Sánchez; Noemí García‐Tardón; Ignacio Ibáñez; Valeria Romanelli; Julián Nevado; Victoria M. James; Maya Topf; Seo-Kyung Chung; Rhys Huw Thomas; Lourdes R. Desviat; Carmen Aragón; Francisco Zafra; Mark I. Rees; Pablo Lapunzina; Robert J. Harvey; Beatriz López-Corcuera
Background: Hyperekplexia or startle disease is caused by defects in glycinergic transmission. Results: A new mutation pY705C in the glycine transporter GlyT2 alters protein trafficking and H+ and Zn2+ transport modulation. Conclusion: Multiple pathogenic mechanisms may contribute to the complex phenotype of individuals with the Y705C mutation. Significance: This is the first common dominant mutation associated with hyperekplexia affecting the presynaptic glycine transporter GlyT2. Hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, producing hypertonia and apnea episodes. Although rare, this orphan disorder can have serious consequences, including sudden infant death. Dominant and recessive mutations in the human glycine receptor (GlyR) α1 gene (GLRA1) are the major cause of this disorder. However, recessive mutations in the presynaptic Na+/Cl−-dependent glycine transporter GlyT2 gene (SLC6A5) are rapidly emerging as a second major cause of startle disease. In this study, systematic DNA sequencing of SLC6A5 revealed a new dominant GlyT2 mutation: pY705C (c.2114A→G) in transmembrane domain 11, in eight individuals from Spain and the United Kingdom. Curiously, individuals harboring this mutation show significant variation in clinical presentation. In addition to classical hyperekplexia symptoms, some individuals had abnormal respiration, facial dysmorphism, delayed motor development, or intellectual disability. We functionally characterized this mutation using molecular modeling, electrophysiology, [3H]glycine transport, cell surface expression, and cysteine labeling assays. We found that the introduced cysteine interacts with the cysteine pair Cys-311–Cys-320 in the second external loop of GlyT2. This interaction impairs transporter maturation through the secretory pathway, reduces surface expression, and inhibits transport function. Additionally, Y705C presents altered H+ and Zn2+ dependence of glycine transport that may affect the function of glycinergic neurotransmission in vivo.
Epigenetics | 2014
Valeria Romanelli; Kazuhiko Nakabayashi; Miguel Vizoso; Sebastian Moran; Isabel Iglesias-Platas; Naoko Sugahara; Carlos Simón; Kenichiro Hata; Manel Esteller; Franck Court; David Monk
Cancer is as much an epigenetic disease as a genetic one; however, the interplay between these two processes is unclear. Recently, it has been shown that a large proportion of DNA methylation variability can be explained by allele-specific methylation (ASM), either at classical imprinted loci or those regulated by underlying genetic variants. During a recent screen for imprinted differentially methylated regions, we identified the genomic interval overlapping the non-coding nc886 RNA (previously known as vtRNA2-1) as an atypical ASM that shows variable levels of methylation, predominantly on the maternal allele in many tissues. Here we show that the nc886 interval is the first example of a polymorphic imprinted DMR in humans. Further analysis of the region suggests that the interval subjected to ASM is approximately 2 kb in size and somatically acquired. An in depth analysis of this region in primary cancer samples with matching normal adjacent tissue from the Cancer Genome Atlas revealed that aberrant methylation in bladder, breast, colon and lung tumors occurred in approximately 27% of cases. Hypermethylation occurred more frequently than hypomethylation. Using additional normal-tumor paired samples we show that on rare occasions the aberrant methylation profile is due to loss-of-heterozygosity. This work therefore suggests that the nc886 locus is subject to variable allelic methylation that undergoes cancer-associated epigenetic changes in solid tumors.