Valeria Sander
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valeria Sander.
Neuroimmunomodulation | 2005
Valeria Sander; María Emilia Solano; Evelin Elia; Carolina Griselda Luchetti; Guillermo Di Girolamo; Claudio Gonzalez; Alicia Beatriz Motta
The aim of the present report was to study the role of high levels of dehydroepiandrosterone (DHEA) on the ovarian function and embryonic resorption during early pregnancy in BALB/c mice. Pregnant animals were injected with DHEA following both the post-implantatory (DHEA-2) and peri-implantatory (DHEA-6) models. Morphological studies of implantation sites showed 40% of embryonic resorption in the DHEA-2 group while 100% of resorption was observed in the DHEA-6 group. Serum samples of both DHEA-2 and DHEA-6 groups showed higher estradiol levels and a lower progesterone concentration than those of control groups. Ovarian prostaglandin E levels after both DHEA-2 and DHEA-6 treatments increased when compared to control groups. The antioxidant metabolite glutathione diminished during both DHEA treatments. In summary, the data presented here suggest that DHEA treatment during early pregnancy modulates the ovarian function and is responsible for embryonic resorption with different degrees depending on when it is administered.
Plant Biotechnology Journal | 2012
María del L. Yácono; Inmaculada Farran; Melina Laguía Becher; Valeria Sander; Vanesa R. Sánchez; Valentina Martin; Jon Veramendi; Marina Clemente
The parasitic protozoan Toxoplasma gondii, the causal agent of toxoplasmosis, can infect most mammals and birds. In human medicine, T. gondii can cause complications in pregnant women and immunodeficient individuals, while in veterinary medicine, T. gondii infection has economic importance due to abortion and neonatal loss in livestock. Thus, the development of an effective anti-Toxoplasma vaccine would be of great value. In this study, we analysed the expression of T. gondii GRA4 antigen by chloroplast transformation (chlGRA4) in tobacco plants and evaluated the humoral and cellular responses and the grade of protection after oral administration of chlGRA4 in a murine model. The Western blot analysis revealed a specific 34-kDa band mainly present in the insoluble fractions. The chlGRA4 accumulation levels were approximately 6 μg/g of fresh weight (equivalent to 0.2% of total protein). Oral immunization with chlGRA4 resulted in a decrease of 59% in the brain cyst load of mice compared to control mice. ChlGRA4 immunization elicited both a mucosal immune response characterized by the production of specific IgA, and IFN-γ, IL-4 and IL-10 secretion by mesenteric lymph node cells, and a systemic response in terms of GRA4-specific serum antibodies and secretion of IFN-γ, IL-4 and IL-10 by splenocytes. Our results indicate that oral administration of chlGRA4 promotes the elicitation of both mucosal and systemic balanced Th1/Th2 responses that control Toxoplasma infection, reducing parasite loads.
Journal of Reproductive Immunology | 2011
María Emilia Solano; Valeria Sander; Hoang Ho; Alicia Beatriz Motta; Petra Clara Arck
PCOS, a major cause of anovulatory sterility, is associated with obesity, insulin resistance and chronic inflammation. New evidence suggests that the immune system aggravates the clinical features of PCOS. Our aim was to study the immune, metabolic and endocrine features of a mouse model of PCOS elicited by androgenisation using dehydroepiandrosterone (DHEA). We observed a significant weight gain and insulin resistance in DHEA-androgenised mice, coupled with the formation of ovarian follicular cysts. DHEA up-regulated the expression of vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 in the granulosa cell layer of the majority of cysts, and VCAM-1 expression in the theca cell layer of all follicles and cysts. The expression of these markers was low in control tissue. Peritoneal cells from PCOS-mice showed enhanced production of inflammatory cytokines, suggesting an association between chronic inflammation and PCOS. In addition, DHEA-androgenisation induced the activation of CD4(+) cells both in vivo and in vitro, and their expression of the respective ligands for VCAM-1 and ICAM-1, VLA-4 and LFA-1, as assessed in vitro. CD4(+) cells were present in androgenised ovaries, especially in the granulosa cell layer of cysts with high VCAM-1 expression. Herein, we present novel evidence that the immune system is activated systemically and locally in a mouse model for PCOS. We propose that VCAM-1 is involved in aggravating PCOS symptoms by promoting leukocyte recruitment to the ovaries and perpetuating local inflammation. These findings offer novel therapeutic opportunities for PCOS, such as blockage of VCAM-1 expression.
Biotechnology Journal | 2015
Romina M. Albarracín; Melina Laguía Becher; Inmaculada Farran; Valeria Sander; Mariana G. Corigliano; María del L. Yácono; Sebastián Pariani; Edwin Sánchez López; Jon Veramendi; Marina Clemente
Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production.
Vaccine | 2013
Mariana G. Corigliano; Ignacio M. Fenoy; Valeria Sander; Andrea Maglioco; Alejandra Goldman; Marina Clemente
Here, we evaluated the modulation of the immune response induced by Hsp90 of Nicotiana benthamiana (NbHsp90.3) against the Maltose Binding Protein (MBP) as a reporter antigen. Equimolar quantities of recombinant proteins were administered in mice as follows: MBP alone (MBP group), a mixture of MBP and rNbHsp90.3 (MBP+rNbHsp90.3 group) and the fusion of MBP to rNbHsp90.3 (MBP-rNbHsp90.3 group). The covalent linkage between NbHsp90.3 and MBP to bring a fusion protein was essential to induce the strong specific antibody response with predominance of IgG2a. Eighty-four days after the first immunization, splenocyte proliferation from MBP-rNbHsp90.3-immunized mice was consistently higher than that from MBP and MBP+rNbHsp90.3 groups. In addition, splenocytes from MBP-rNbHsp90.3 immunized mice produced higher levels of IFN-γ than controls. Finally, both formulations with rNbHsp90.3 significantly enhanced the MHC class I expression levels, but only rNbHsp90.3 covalent bound to MBP induced a specific cellular immune response against MBP measured as increased percentage of CD8(+) T cells. Taken together, these results suggest that plant HSP90s could be incorporated as adjuvants in vaccines that require the generation of a Th1 response along with a CD8 cytotoxic cell response to confer immunity.
Reproduction | 2009
Valeria Sander; Graciela Facorro; Lidia L. Piehl; Emilio Rubín de Celis; Alicia Beatriz Motta
We evaluated the effect of hyperandrogenism in ovaries with functional and regressing corpora lutea (CL) and the action of metformin in preventing these possible alterations using a mouse model. To obtain a CL functional for 9+/-1 days, immature female mice of the BALB/c strain were injected i.p. with 10 IU/mouse of pregnant mares serum gonadotropin (PMSG). DHEA (60 mg/kg body weight s.c., 24 and 48 h prior to kill) decreased both serum progesterone (P) and estradiol (E(2)) levels and increased the activity of superoxide dismutase (SOD) from ovaries with functional CL (on day 5 after PMSG). It increased P and E(2) and the activities of SOD and catalase (CAT) and decreased lipoperoxidation of ovaries with regressing CL (on day 9 after PMSG). Treatment with DHEA did not affect the production of prostaglandin F(2alpha) (PGF(2alpha)) or PGE by ovaries with functional CL, whereas DHEA decreased PGF(2alpha) and increased PGE production by ovaries with regressing CL. Metformin (50 mg/kg body weight, orally) given together with DHEA restored E(2) levels from mice with ovaries with functional CL and serum P, PGF(2alpha) and PGE levels, and oxidative balance in mice with ovaries with regressing CL. Metformin alone was able to modulate serum P and E(2) levels, lipoperoxidation, SOD and CAT, and the 5,5-dimethyl-1-pyrroline N-oxide/(*)OH signal. These findings suggest that hyperandrogenism is able to induce or to rescue CL from luteolysis and metformin treatment is able to prevent these effects.
Archive | 2018
Valeria Sander; Sergio O. Angel; Marina Clemente
Toxoplasmosis is a worldwide-distributed infection caused by Toxoplasma gondii, which causes a wide range of clinical syndromes in humans, mammals and birds. T. gondii is considered a parasite of veterinary and medical importance, because it may cause abortion or congenital disease in its intermediate hosts. Despite the economic losses associated with T. gondii infection in farm animals and the socio-economic impact caused by this zoonotic disease in the human population, there is no effective treatment available for humans or animals able to eliminate the parasite from the host once the chronic infection has been established. The only commercial vaccine is the S48 strain of attenuated tachyzoites for use in sheep. However, this vaccine causes side effects, has a short life time and induces a short-term immunity. So far, no acellular vaccine against toxoplasmosis has been commercialized. In fact, future challenges include the development of an effective vaccine to prevent toxoplasmosis. Most parasitologists and vaccinologists agree that future efforts should be concentrated on developing multi-antigen vaccines and more efficient delivery systems able to express heterologous proteins abundantly as well as on searching for immunization schedules and adequate adjuvants to enhance the protective responses. To achieve this, platforms for the production of acellular vaccines based on the use of plants can have an important role.
Molecular Human Reproduction | 2006
Evelin Elia; Valeria Sander; Carolina Griselda Luchetti; María Emilia Solano; G. Di Girolamo; Claudio D Gonzalez; Alicia Beatriz Motta
Journal of Reproductive Immunology | 2004
Carolina Griselda Luchetti; Maria Emilia Solano; Valeria Sander; Maria Laura Barreiro Arcos; Claudio Gonzalez; Guillermo Di Girolamo; Sara Chiocchio; Graciela Cremaschi; Alicia Beatriz Motta
Reproduction | 2006
Valeria Sander; Carolina Griselda Luchetti; María Emilia Solano; Evelin Elia; Guillermo Di Girolamo; Claudio Gonzalez; Alicia Beatriz Motta