Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valerică Raicu is active.

Publication


Featured researches published by Valerică Raicu.


Biochemical Journal | 2013

The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane.

Suparna Patowary; Elisa Alvarez-Curto; Tian-Rui Xu; Jessica D. Holz; Julie A. Oliver; Graeme Milligan; Valerică Raicu

The literature on GPCR (G-protein-coupled receptor) homo-oligomerization encompasses conflicting views that range from interpretations that GPCRs must be monomeric, through comparatively newer proposals that they exist as dimers or higher-order oligomers, to suggestions that such quaternary structures are rather ephemeral or merely accidental and may serve no functional purpose. In the present study we use a novel method of FRET (Förster resonance energy transfer) spectrometry and controlled expression of energy donor-tagged species to show that M(3)Rs (muscarinic M(3) acetylcholine receptors) at the plasma membrane exist as stable dimeric complexes, a large fraction of which interact dynamically to form tetramers without the presence of trimers, pentamers, hexamers etc. That M(3)R dimeric units interact dynamically was also supported by co-immunoprecipitation of receptors synthesized at distinct times. On the basis of all these findings, we propose a conceptual framework that may reconcile the conflicting views on the quaternary structure of GPCRs.


Journal of Biological Physics | 2007

Efficiency of Resonance Energy Transfer in Homo-Oligomeric Complexes of Proteins

Valerică Raicu

A theoretical model is proposed for the apparent efficiency of fluorescence (Förster) resonance energy transfer (FRET) in mixtures of free monomers and homo-oligomeric protein complexes of uniform size. The model takes into account possible pathways for transfer of optical excitations from single donors to multiple acceptors and from multiple donors (non-simultaneously) to single acceptors. This necessary departure from the standard theory has been suggested in the literature, but it has only been successfully implemented for a few particular cases, such as for particular geometries of the oligomers. The predictions of the present theoretical model differ significantly from those of the standard theory, with the exception of the case of dimers, for which agreement is observed. This model therefore provides new insights into the FRET behavior of oligomers comprising more than two monomers, and also suggests means for determining the size of oligomeric protein complexes as well as the proportion of associated and unassociated monomers.


Biophysical Journal | 2013

FRET Spectrometry: A New Tool for the Determination of Protein Quaternary Structure in Living Cells

Valerică Raicu; Deo R. Singh

Förster resonance energy transfer (FRET) is an exquisitely sensitive method for detection of molecular interactions and conformational changes in living cells. The recent advent of fluorescence imaging technology with single-molecule (or molecular-complex) sensitivity, together with refinements in the kinetic theory of FRET, provide the necessary tool kits for determining the stoichiometry and relative disposition of the protomers within protein complexes (i.e., quaternary structure) of membrane receptors and transporters in living cells. In contrast to standard average-based methods, this method relies on the analysis of distributions of apparent FRET efficiencies, E(app), across the image pixels of individual cells expressing proteins of interest. The most probable quaternary structure of the complex is identified from the number of peaks in the E(app) distribution and their dependence on a single parameter, termed pairwise FRET efficiency. Such peaks collectively create a unique FRET spectrum corresponding to each oligomeric configuration of the protein. Therefore, FRET could quite literally become a spectrometric method--akin to that of mass spectrometry--for sorting protein complexes according to their size and shape.


Integrative Biology | 2013

Determination of the quaternary structure of a bacterial ATP-binding cassette (ABC) transporter in living cells.

Deo R. Singh; Mohammad M. Mohammad; Suparna Patowary; Michael R. Stoneman; Julie A. Oliver; Liviu Movileanu; Valerică Raicu

Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that affects patients with cystic fibrosis and immunocompromised individuals. This bacterium coexpresses two unique forms of lipopolysaccharides (LPSs) on its surface, the A- and B-band LPS, which are among the main virulence factors that contribute to its pathogenicity. The polysaccharides in A-band LPSs are synthesized in the cytoplasm and translocated into the periplasm via an ATP-binding cassette (ABC) transporter consisting of a transmembrane protein, Wzm, and a cytoplasmic nucleotide-binding protein, Wzt. Most of the biochemical studies of A-band PSs in Pseudomonas aeruginosa are focused on the stages of the synthesis and ligation of PS, leaving the export stage involving the ABC transporter mostly unexplored. This difficulty is compounded by the fact that the subunit composition and structure of this bi-component ABC transporter are still unknown. Here we propose a simple but powerful method, based on Förster Resonance Energy Transfer (FRET) and optical micro-spectroscopy technology, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of the Wzm-Wzt complex in living cells. It is found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the structure and behavior of this ABC transporter will help develop antibiotics targeting the biosynthesis of the A-band LPS endotoxin.


Biochemical Journal | 2016

Quaternary structures of opsin in live cells revealed by FRET spectrometry

Ashish K. Mishra; Megan Gragg; Michael R. Stoneman; Gabriel Biener; Julie A. Oliver; Przemyslaw Miszta; Slawomir Filipek; Valerică Raicu; Paul S.-H. Park

Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that initiates phototransduction in the retina. The receptor consists of the apoprotein opsin covalently linked to the inverse agonist 11-cis retinal. Rhodopsin and opsin have been shown to form oligomers within the outer segment disc membranes of rod photoreceptor cells. However, the physiological relevance of the observed oligomers has been questioned since observations were made on samples prepared from the retina at low temperatures. To investigate the oligomeric status of opsin in live cells at body temperatures, we utilized a novel approach called Förster resonance energy transfer spectrometry, which previously has allowed the determination of the stoichiometry and geometry (i.e. quaternary structure) of various GPCRs. In the current study, we have extended the method to additionally determine whether or not a mixture of oligomeric forms of opsin exists and in what proportion. The application of this improved method revealed that opsin expressed in live Chinese hamster ovary (CHO) cells at 37°C exists as oligomers of various sizes. At lower concentrations, opsin existed in an equilibrium of dimers and tetramers. The tetramers were in the shape of a near-rhombus. At higher concentrations of the receptor, higher-order oligomers began to form. Thus, a mixture of different oligomeric forms of opsin is present in the membrane of live CHO cells and oligomerization occurs in a concentration-dependent manner. The general principles underlying the concentration-dependent oligomerization of opsin may be universal and apply to other GPCRs as well.


Biochimica et Biophysica Acta | 2017

Quaternary structure of the yeast pheromone receptor Ste2 in living cells

Michael R. Stoneman; Joel Paprocki; Gabriel Biener; Koki Yokoi; Aishwarya Shevade; Sergei Kuchin; Valerică Raicu

Transmembrane proteins known as G protein-coupled receptors (GPCRs) have been shown to form functional homo- or hetero-oligomeric complexes, although agreement has been slow to emerge on whether homo-oligomerization plays functional roles. Here we introduce a platform to determine the identity and abundance of differing quaternary structures formed by GPCRs in living cells following changes in environmental conditions, such as changes in concentrations. The method capitalizes on the intrinsic capability of FRET spectrometry to extract oligomer geometrical information from distributions of FRET efficiencies (or FRET spectrograms) determined from pixel-level imaging of cells, combined with the ability of the statistical ensemble approaches to FRET to probe the proportion of different quaternary structures (such as dimers, rhombus or parallelogram shaped tetramers, etc.) from averages over entire cells. Our approach revealed that the yeast pheromone receptor Ste2 forms predominantly tetramers at average expression levels of 2 to 25 molecules per pixel (2.8·10-6 to 3.5·10-5molecules/nm2), and a mixture of tetramers and octamers at expression levels of 25-100 molecules per pixel (3.5·10-5 to 1.4·10-4molecules/nm2). Ste2 is a class D GPCR found in the yeast Saccharomyces cerevisiae of the mating type a, and binds the pheromone α-factor secreted by cells of the mating type α. Such investigations may inform development of antifungal therapies targeting oligomers of pheromone receptors. The proposed FRET imaging platform may be used to determine the quaternary structure sub-states and stoichiometry of any GPCR and, indeed, any membrane protein in living cells. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.


Biophysical Journal | 2015

Experimental Verification of the Kinetic Theory of FRET Using Optical Microspectroscopy and Obligate Oligomers

Suparna Patowary; Luca F. Pisterzi; Gabriel Biener; Jessica D. Holz; Julie A. Oliver; James W. Wells; Valerică Raicu

Förster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing. That theory has been tested in the work described in this article using linked fluorescent proteins located in the cytoplasm and at the plasma membrane of living cells. The cytoplasmic constructs were fused combinations of Cerulean as donor (D), Venus as acceptor (A), and a photo-insensitive molecule (Amber) as a nonfluorescent (N) place holder: namely, NDAN, NDNA, and ADNN duplexes, and the fully fluorescent quadruplex ADAA. The membrane-bound constructs were fused combinations of GFP2 as donor (D) and eYFP as acceptor (A): namely, two fluorescent duplexes (i.e., DA and AD) and a fluorescent triplex (ADA). According to the theory, the FRET efficiency of a multiplex such as ADAA or ADA can be predicted from that of analogs containing a single acceptor (e.g., NDAN, NDNA, and ADNN, or DA and AD, respectively). Relatively small but statistically significant differences were observed between the measured and predicted FRET efficiencies of the two multiplexes. While elucidation of the cause of this mismatch could be a worthy endeavor, the discrepancy does not appear to question the theoretical underpinnings of a large family of FRET-based methods for determining the stoichiometry and quaternary structure of complexes of macromolecules in living cells.


Proceedings of SPIE | 2008

Determination of two-photon excitation and emission spectra of fluorescent molecules in single living cells

Valerică Raicu; Anurag Chaturvedi; Michael R. Stoneman; Giorgi Petrov; Russell Fung; D. K. Saldin; Devin Gillman

Modelocked Ti:Sapphire lasers are widely used in two-photon microscopes (TPM), partly due to their tunability over a broad range of wavelengths (between 700 nm and 1000 nm). Many biophysical applications, including quantitative Förster Resonance Energy Transfer (FRET) and photoswitching of fluorescent proteins between dark and bright states, require wavelength tuning without optical realignment, which is not easily done in tunable Ti:Sapphire lasers. In addition, for studies of dynamics in biological systems the time required for tuning the excitation should be commensurate with the shortest of the time scales of the processes investigated. A set-up in which a modelocked Ti:Sapphire oscillator providing broad-bandwidth (i.e., short) pulses with fixed center wavelength is coupled to a pulse shaper incorporating a spatial light modulator placed at the Fourier plane of a zero-dispersion two-grating setup, represents a faster alternative to the tunable laser. A pulse shaping system and a TPM with spectral resolution allowed us to acquire two-photon excitation and emission spectra of fluorescent molecules in single living cells. Such spectra may be exploited for mapping intracellular pH and for quantitative studies of protein localization and interactions in vivo.


Proceedings of SPIE | 2011

Determination of the stoichiometry, structure, and distribution in living cells of protein complexes from analysis of single-molecular-complexes FRET

Michael R. Stoneman; Suparna Patowary; M. T. Roesch; Deo R. Singh; V. Strogolov; Julie A. Oliver; Valerică Raicu

Advances in two-photon microscopy with spectral resolution (TPM-SR) and the development of a simple theory of Förster Resonance Energy Transfer (FRET) for single molecular complexes recently lead to the development of a novel method for the determination of structure and localization in living cells of membrane protein complexes (Raicu et al., Nature Photon., 3, 2009). An appealing feature of this method is its ability to provide such important information while being unaffected by spurious signals originating from stochastic FRET (Singh and Raicu, Biophys. J., 98, 2010). We will present the results obtained from our recent studies of trimeric FRET calibration standards expressed in the cytoplasm of Chinese hamster ovary (CHO) cells, as well as a model G protein-coupled receptor expressed in the membrane of yeast. Emphasis will be placed on the measurement and analysis of single-molecular-complex FRET data for determination of the quaternary structure of some proteins (or the protein complex structure).


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2018

Extraction of information on macromolecular interactions from fluorescence micro-spectroscopy measurements in the presence and absence of FRET

Valerică Raicu

Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information.

Collaboration


Dive into the Valerică Raicu's collaboration.

Top Co-Authors

Avatar

Julie A. Oliver

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Michael R. Stoneman

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Suparna Patowary

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Deo R. Singh

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Gabriel Biener

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anurag Chaturvedi

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Ashish K. Mishra

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Devin Gillman

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Jessica D. Holz

University of Wisconsin–Milwaukee

View shared research outputs
Researchain Logo
Decentralizing Knowledge