Valérie Abadie
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valérie Abadie.
Annual Review of Immunology | 2011
Valérie Abadie; Ludvig M. Sollid; Luis B. Barreiro; Bana Jabri
Celiac disease (CD) is a gluten-sensitive enteropathy that develops in genetically susceptible individuals by exposure to cereal gluten proteins. This review integrates insights from immunological studies with results of recent genetic genome-wide association studies into a disease model. Genetic data, among others, suggest that viral infections are implicated and that natural killer effector pathways are important in the pathogenesis of CD, but most prominently these data converge with existing immunological findings that CD is primarily a T cell-mediated immune disorder in which CD4(+) T cells that recognize gluten peptides in the context of major histocompatibility class II molecules play a central role. Comparison of genetic pathways as well as genetic susceptibility loci between CD and other autoimmune and inflammatory disorders reveals that CD bears stronger resemblance to T cell-mediated organ-specific autoimmune than to inflammatory diseases. Finally, we present evidence suggesting that the high prevalence of CD in modern societies may be the by-product of past selection for increased immune responses to combat infections in populations in which agriculture and cereals were introduced early on in the post-Neolithic period.
Nature | 2011
R. W. DePaolo; Valérie Abadie; Fangming Tang; Hannah Fehlner-Peach; Jason A. Hall; Wen Wang; E. V. Marietta; Donald D. Kasarda; Thomas A. Waldmann; Joseph A. Murray; Carol E. Semrad; Sonia S. Kupfer; Yasmine Belkaid; Stefano Guandalini; Bana Jabri
Under physiological conditions the gut-associated lymphoid tissues not only prevent the induction of a local inflammatory immune response, but also induce systemic tolerance to fed antigens. A notable exception is coeliac disease, where genetically susceptible individuals expressing human leukocyte antigen (HLA) HLA-DQ2 or HLA-DQ8 molecules develop inflammatory T-cell and antibody responses against dietary gluten, a protein present in wheat. The mechanisms underlying this dysregulated mucosal immune response to a soluble antigen have not been identified. Retinoic acid, a metabolite of vitamin A, has been shown to have a critical role in the induction of intestinal regulatory responses. Here we find in mice that in conjunction with IL-15, a cytokine greatly upregulated in the gut of coeliac disease patients, retinoic acid rapidly activates dendritic cells to induce JNK (also known as MAPK8) phosphorylation and release the proinflammatory cytokines IL-12p70 and IL-23. As a result, in a stressed intestinal environment, retinoic acid acted as an adjuvant that promoted rather than prevented inflammatory cellular and humoral responses to fed antigen. Altogether, these findings reveal an unexpected role for retinoic acid and IL-15 in the abrogation of tolerance to dietary antigens.
Seminars in Immunopathology | 2012
Valérie Abadie; Valentina Discepolo; Bana Jabri
Celiac disease is a T cell-mediated immune disorder induced by dietary gluten that is characterized by the development of an inflammatory anti-gluten CD4 T cell response, anti-gluten antibodies, and autoantibodies against tissue transglutaminase 2 and the activation of intraepithelial lymphocytes (IELs) leading to the destruction of the intestinal epithelium. Intraepithelial lymphocytes represent a heterogeneous population of T cells composed mainly of cytotoxic CD8 T cells residing within the epithelial layer, whose main role is to maintain the integrity of the epithelium by eliminating infected cells and promoting epithelial repair. Dysregulated activation of IELs is a hallmark of CD and is critically involved in epithelial cell destruction and the subsequent development of villous atrophy. In this review, we compare and contrast the phenotype and function of human and mouse small intestinal IELs under physiological conditions. Furthermore, we discuss how conditions of epithelial distress associated with overexpression of IL-15 and non-classical MHC class I molecules induce cytotoxic IELs to become licensed killer cells that upregulate activating NKG2D and CD94/NKG2C natural killer receptors, acquiring lymphokine killer activity. Pathways leading to dysregulated IEL activation could eventually be targeted to prevent villous atrophy and treat patients who respond poorly to gluten-free diet.
Immunological Reviews | 2014
Valérie Abadie; Bana Jabri
Interleukin‐15 (IL‐15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL‐15 upregulation has been reported in many organ‐specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL‐15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL‐15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL‐15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Science | 2017
Romain Bouziat; Reinhard Hinterleitner; Judy J. Brown; Jennifer E. Stencel-Baerenwald; Mine R. Ikizler; Toufic Mayassi; Marlies Meisel; Sangman M. Kim; Valentina Discepolo; Andrea J. Pruijssers; Jordan D. Ernest; Jason A. Iskarpatyoti; Léa M.M. Costes; Ian Lawrence; Brad A. Palanski; Mukund Varma; Matthew A. Zurenski; Solomiia Khomandiak; Nicole McAllister; Pavithra Aravamudhan; Karl W. Boehme; Fengling Hu; Janneke N. Samsom; Hans-Christian Reinecker; Sonia S. Kupfer; Stefano Guandalini; Carol E. Semrad; Valérie Abadie; Chaitan Khosla; Luis B. Barreiro
A nonpathogenic virus can promote inflammatory immunity to dietary antigens and may be linked to the development of celiac disease. Viruses compound dietary pathology Reoviruses commonly infect humans and mice asymptomatically. Bouziat et al. found that immune responses to two gut-infecting reoviruses take different paths in mice (see the Perspective by Verdu and Caminero). Both reoviruses invoked protective immune responses, but for one reovirus, when infection happened in the presence of a dietary antigen (such as gluten or ovalbumin), tolerance to the dietary antigen was lost. This was because this strain prevented the formation of tolerogenic T cells. Instead, it promoted T helper 1 immunity to the dietary antigen through interferon regulatory factor 1 signaling. Celiac disease patients also exhibited elevated levels of antibodies against reovirus. Science, this issue p. 44; see also p. 29 Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.
Nature Reviews Immunology | 2015
Bana Jabri; Valérie Abadie
In this Opinion article, we discuss the function of tissues as a crucial checkpoint for the regulation of effector T cell responses, and the notion that interleukin-15 (IL-15) functions as a danger molecule that communicates to the immune system that the tissue is under attack and poises it to mediate tissue destruction. More specifically, we propose that expression of IL-15 in tissues promotes T helper 1 cell-mediated immunity and provides co-stimulatory signals to effector cytotoxic T cells to exert their effector functions and drive tissue destruction. Therefore, we think that IL-15 contributes to tissue protection by promoting the elimination of infected cells but that when its expression is chronically dysregulated, it can promote the development of complex T cell-mediated disorders associated with tissue destruction, such as coeliac disease and type 1 diabetes.
Gastroenterology | 2015
Mala Setty; Valentina Discepolo; Valérie Abadie; Sarah Kamhawi; Toufic Mayassi; Andrew Kent; Cezary Ciszewski; Maria Maglio; Emily O. Kistner; Govind Bhagat; Carol E. Semrad; Sonia S. Kupfer; Peter H. Green; Stefano Guandalini; Riccardo Troncone; Joseph A. Murray; Jerrold R. Turner; Bana Jabri
BACKGROUND & AIMS The mechanisms of tissue destruction during progression of celiac disease are poorly defined. It is not clear how tissue stress and adaptive immunity contribute to the activation of intraepithelial cytotoxic T cells and the development of villous atrophy. We analyzed epithelial cells and intraepithelial cytotoxic T cells in family members of patients with celiac disease, who were without any signs of adaptive antigluten immunity, and in potential celiac disease patients, who have antibodies against tissue transglutaminase 2 in the absence of villous atrophy. METHODS We collected blood and intestinal biopsy specimens from 268 patients at tertiary medical centers in the United States and Italy from 2004 to 2012. All subjects had normal small intestinal histology. Study groups included healthy individuals with no family history of celiac disease or antibodies against tissue transglutaminase 2 (controls), healthy family members of patients with celiac disease, and potential celiac disease patients. Intraepithelial cytotoxic T cells were isolated and levels of inhibitory and activating natural killer (NK) cells were measured by flow cytometry. Levels of heat shock protein (HSP) and interleukin 15 were measured by immunohistochemistry, and ultrastructural alterations in intestinal epithelial cells (IECs) were assessed by electron microscopy. RESULTS IECs from subjects with a family history of celiac disease, but not from subjects who already had immunity to gluten, expressed higher levels of HS27, HSP70, and interleukin-15 than controls; their IECs also had ultrastructural alterations. Intraepithelial cytotoxic T cells from relatives of patients with celiac disease expressed higher levels of activating NK receptors than cells from controls, although at lower levels than patients with active celiac disease, and without loss of inhibitory receptors for NK cells. Intraepithelial cytotoxic T cells from potential celiac disease patients failed to up-regulate activating NK receptors. CONCLUSIONS A significant subset of healthy family members of patients with celiac disease with normal intestinal architecture had epithelial alterations, detectable by immunohistochemistry and electron microscopy. The adaptive immune response to gluten appears to act in synergy with epithelial stress to allow intraepithelial cytotoxic T cells to kill epithelial cells and induce villous atrophy in patients with active celiac disease.
PLOS ONE | 2013
Fangming Tang; Benjamin Sally; Cezary Ciszewski; Valérie Abadie; Shane A. Curran; Veronika Groh; Oliver FitzGerald; Robert Winchester; Bana Jabri
NK cells are large granular lymphocytes that form a critical component of the innate immune system, whose functions include the killing of cells expressing stress-induced molecules. It is increasingly accepted that despite being considered prototypical effector cells, NK cells require signals to reach their full cytotoxic potential. We previously showed that IL-15 is capable of arming CD8 effector T cells to kill independently of their TCR via NKG2D in a cPLA2-dependent process. As NK cells also express NKG2D, we wanted to investigate whether this pathway functioned in an analogous manner and if resting NK cells could be primed to the effector phase by IL-15. Furthermore, to establish relevance to human disease we studied a possible role for this pathway in the pathogenesis of psoriatic arthritis, since there are aspects of this disease that suggest a potential effector role for the innate immune system. We found that PsA patients had upregulated IL-15 and MIC in their affected synovial tissues, and that this unique inflammatory environment enabled NK cell activation and killing via NKG2D and cPLA2. Moreover, we were able to reproduce the phenotype of joint NK cells from blood NK cells by incubating them with IL-15. Altogether, these findings suggest a destructive role for NK cells when activated by environmental stress signals during the pathogenesis of PsA and demonstrate that IL-15 is capable of priming resting NK cells in tissues to the effector phase.
Journal of Experimental Medicine | 2015
Fangming Tang; Benjamin Sally; Kathryn Lesko; Valentina Discepolo; Valérie Abadie; Cezary Ciszewski; Carol E. Semrad; Stefano Guandalini; Sonia S. Kupfer; Bana Jabri
Tang et al. show that cytotoxic effector cells produce and respond to cysteinyl leukotrienes to allow target cell killing dependent on NKG2D and IL-15. They further demonstrate a role for cysteinyl leukotrienes in celiac disease pathogenesis.
Mucosal Immunology (Fourth Edition) | 2015
Valérie Abadie; Bana Jabri
Abstract Celiac disease (CD) is a T cell–mediated intestinal disorder induced by dietary gluten in genetically susceptible individuals. It is a prototypic example of how the interaction between predisposing genes (human leukocyte antigen (HLA) and non-HLA genes) and the environment (gluten) can lead to the development of complex inflammatory disorders. Although anti-gluten CD4 + T cells are central in all aspects of CD pathogenesis, from the loss of oral tolerance to the generation of antibodies, intraepithelial cytotoxic CD8 + T lymphocytes are indispensable to promote intestinal tissue destruction. Furthermore, posttranslational modifications mediated by tissue transglutaminase-2 appear to be key in the initiation and/or amplification of anti-gluten T cell immunity. Despite many advances in our understanding of CD pathophysiology, how distinct immunological pathways cooperate to promote the destruction of intestinal epithelial cells is not yet fully understood. Here we summarize our current knowledge on the immunobiology of CD and discuss future research perspectives.