Valérie Beaumal
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valérie Beaumal.
Food Chemistry | 2003
Marc Anton; V. Martinet; Michèle Dalgalarrondo; Valérie Beaumal; E. David-Briand; Hanitra Rabesona
Abstract Low-density lipoproteins (LDL) are considered to be the main contributors to the exceptional emulsifying activity of hen egg yolk. However, the lack of understanding of the molecular basis for LDL functionality is a significant obstacle for good control of yolk emulsions. Consequently, we have attempted to link the structure and the characteristics of LDL with their emulsifying properties. After purification of LDL, we have determined their protein and lipid compositions, their ultrastructure, and then extracted their apoproteins for physicochemical characterisation. LDL are composed of about 12% of proteins and 87% of lipids and present a spherical shape with a mean diameter of about 35 nm. LDL solubility is high, whatever the medium conditions, because of their low density. LDL contain five major apoproteins out of which the apoprotein of 15 kDa is considered to be the most surface-active. After extraction, this apoprotein showed a high proportion of amphipathic α-helix chains, explaining the high capacity of this apoprotein to adsorb at the oil–water interface.
Food Hydrocolloids | 2000
M. Le Denmat; Marc Anton; Valérie Beaumal
Comprehension of hen egg yolk emulsifying properties remains incomplete because competition between its various emulsifiers (proteins and lipoproteins containing phospholipids) has not been clearly elucidated and colloidal interactions between yolk-stabilised oil droplets have not been documented. Recent studies emphasised the interest of the fractionation of yolk into plasma and granules to improve this comprehension. In the present study, we characterised, concurrently, emulsion properties (oil droplet size and stability against creaming) and interface attributes (interfacial concentrations of proteins and phospholipids, SDS-PAGE profiles of adsorbed proteins and zeta potential) in oil-in-water (O/W) emulsions prepared with yolk, plasma and granules. We observed these features at four physicochemical conditions (pH 3.0 or 7.0 and at 0.15 or 0.55 M NaCl). Emulsion properties in emulsions made with yolk or plasma varied similarly as a function of pH and NaCl concentration whereas granules emulsions exhibited distinct properties. Therefore the main contributors to yolk emulsifying properties are to be sought for among plasma constituents (proteinaceous or phospholipids). Since, in plasma emulsions, variations of emulsion stability against creaming correlated exclusively to variations of protein interfacial concentration, a driving contribution of the proteinaceous part of plasma, namely apo-LDL, was hypothesised. In the pH and ionic strength ranges studied, zeta potentials of the interfaces were low, excluding extended electrostatic repulsion between oil droplets. We deduced that steric repulsion is the main interaction opposing to droplet aggregation in food emulsions made with yolk.
Colloids and Surfaces B: Biointerfaces | 2001
Marc Anton; M. Le Denmat; Valérie Beaumal; P. Pilet
Hen egg yolk is a traditional ingredient used in a wide variety of food emulsions, especially fluid sauces. Industrial processing of these sauces generally involves heat treatments in order to pasteurise or sterilise them. These heat treatments may cause undesired gelation of the emulsion, because egg yolk proteins are particularly thermosensitive. Heat gelation of oil-in-water emulsions prepared with egg yolk may differ from that of egg yolk solutions, because of the influence of oil droplets on network formation. In this study, we investigated the influence of oil droplets on the gelation of oil-in-water emulsions made with yolk. We studied three pH values: 3.0, 5.0 and 7.0 with a constant NaCl concentration: 0.55 M. Oil droplet size was controlled after emulsification, gelation of solutions and emulsions was monitored in situ by coupling heating with recording viscoelastic properties, and transmission electron microscopy was conducted in heat-set emulsion gels. In an attempt to target the proteins that impose the kinetic of gelation of egg yolk, we repeated the experiment with plasma and granules, the main fractions of yolk. In situ rheology showed that, in our experimental conditions [especially oil volume fraction (0.3) and oil droplet size (d3.2=1 &mgr;m)], emulsions made with yolk and plasma have a similar gelation process with oil droplets acting as inactive fillers. Furthermore, transmission electron microscopy showed similar network characteristics between heated emulsions made with yolk and plasma. Moreover, we demonstrated that acidic conditions provided the fastest gelation of yolk solutions and emulsions. On the other hand, in emulsions prepared with granules, oil droplets behaved as active filler particles and reinforced the gel strength.
Food Hydrocolloids | 2000
Marc Anton; Valérie Beaumal; G. Gandemer
Abstract Native and disrupted granules were used to prepare and stabilise oil-in-water emulsions containing washed sunflower oil. Native granules were in an insoluble aggregated form, whereas, after addition of sodium chloride, granules were disrupted and their proteins and lipoproteins were liberated and solubilised. Native granules were adsorbed at the oil–water interface as complex particles without dissociation of their individual proteins and lipoproteins. This aggregated state allowed a greater surface coverage than the molecular state following upon granules disruption, because of the convective mass-transport occurring during homogenisation. However, in emulsions made by means of these aggregates, the droplet size was larger, and stabilisation against creaming and coalescence were less efficient than that of emulsions made with proteins and lipoproteins liberated from disrupted granules. The electrophoretic study of emulsion droplets revealed that, whatever the native or disrupted form, all major granules proteins were adsorbed at the oil–water interface. Results suggest that it is possible to realise emulsions with native granules but that such emulsions are less fine, less homogenous and less stable than emulsions realised with disrupted granules.
Colloids and Surfaces B: Biointerfaces | 2003
Virginie Martinet; Patrick Saulnier; Valérie Beaumal; Jean-Luc Courthaudon; Marc Anton
Abstract Hen egg yolk is largely used as food ingredient notably because of its exceptional emulsifying properties. Low-density lipoproteins (LDL) are the main egg yolk constituent. LDL and particularly apoLDL are thought to control largely emulsifying properties of egg yolk-based products. Nevertheless, few studies have concerned the interfacial behaviour of these lipoproteins at the oil–water interface and nothing has been published about the air–water interface. Controversies still remain about LDL adsorption mechanism at the oil–water interface even if a widely spread theory suggests their breaking at the interface, allowing then their constituents to spread. The Langmuir film balance and atomic force microscopy (AFM) were used in this study in the aim to characterise LDL surface behaviour in dynamic conditions at the air–water interface. The understanding of LDL adsorption mechanism and surface organisation at the air–water interface should provide useful information about LDL behaviour at the oil–water interface. LDL and lipids extracted from LDL—neutral lipids, phospholipids and total lipids (mixture of the two previous species)—were spread at the air–water interface to clarify the role of each constituent in the lipoprotein film. Results clearly show that LDL are disrupted at the interface to release notably neutral lipids from the lipoprotein core, enabling then their spreading. Each lipid class has been identified on the LDL film isotherm and seems to behave independently and individually at the interface within the lipoprotein film.
Theriogenology | 2012
Elodie Pillet; Catherine Labbé; Florence Batellier; Guy Duchamp; Valérie Beaumal; Marc Anton; S. Desherces; E. Schmitt; Michèle Magistrini
Egg yolk is normally used as a protective agent to freeze semen of equine and other species. However, addition of egg yolk in extenders is not without disadvantages and the demand to find cryoprotective alternatives is strong. The objective of this study was to test the cryoprotective capacities of liposomes composed of egg yolk phospholipids. Two experiments were conducted: 1) the first to determine the optimal composition and concentration of liposomes to preserve post-thaw motility and membrane integrity of spermatozoa; 2) the second to assess in vivo the cryoprotective capacities of these liposomes. In Experiment 2, post-thaw motility and membrane integrity of spermatozoa were also analyzed. Experiment 1 demonstrated that liposomes composed of phospholipids E80 (commercial lecithins from egg yolk composed mainly of phosphatidylcholine and phosphatidylethanolamine) and of Hanks salts-glucose-lactose solution (E80-liposomes) were the most efficient in preserving post-thaw motility. The optimal concentration was 4 % (v/v). In Experiment 2, fertility rate after artificial insemination of semen frozen with E80-liposomes was 55 % (22/40) compared with 68 % (27/40) with the control extender containing egg yolk (EY) (p = 0.23). Post-thaw motility parameters were higher with EY than with E80-liposomes (p < 0.0001). For post-thaw membrane integrity no difference was observed between the two extenders (p = 0.08). Liposomes composed of egg yolk phospholipids appeared to be a promising alternative to replace egg yolk in semen freezing extenders in equine species.
Theriogenology | 2011
E. Pillet; Guy Duchamp; F. Batellier; Valérie Beaumal; Marc Anton; S. Desherces; E. Schmitt; M. Magistrini
Food Hydrocolloids | 2009
F. Speroni; Valérie Beaumal; M. de Lamballerie; Marc Anton; María Cristina Añón; María C. Puppo
Food Hydrocolloids | 2011
María C. Puppo; Valérie Beaumal; F. Speroni; M. de Lamballerie; María Cristina Añón; Marc Anton
Food Hydrocolloids | 2008
María C. Puppo; Valérie Beaumal; N. Chapleau; Francisco Speroni; M. de Lamballerie; María Cristina Añón; Marc Anton