Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valerie Burland is active.

Publication


Featured researches published by Valerie Burland.


Nature | 2001

Genome sequence of enterohaemorrhagic Escherichia coli O157:H7

Nicole T. Perna; Guy Plunkett; Valerie Burland; Bob Mau; Jeremy D. Glasner; Debra J. Rose; George F. Mayhew; Peter S. Evans; Jason Gregor; Heather A. Kirkpatrick; György Pósfai; Jeremiah D. Hackett; Sara Klink; Adam Boutin; Ying Shao; Leslie Miller; Erik J. Grotbeck; N. Wayne Davis; Alex Lim; Eileen T. Dimalanta; Konstantinos Potamousis; Jennifer Apodaca; Thomas S. Anantharaman; Jieyi Lin; Galex Yen; David C. Schwartz; Rodney A. Welch; Frederick R. Blattner

The bacterium Escherichia coli O157:H7 is a worldwide threat to public health and has been implicated in many outbreaks of haemorrhagic colitis, some of which included fatalities caused by haemolytic uraemic syndrome. Close to 75,000 cases of O157:H7 infection are now estimated to occur annually in the United States. The severity of disease, the lack of effective treatment and the potential for large-scale outbreaks from contaminated food supplies have propelled intensive research on the pathogenesis and detection of E. coli O157:H7 (ref. 4). Here we have sequenced the genome of E. coli O157:H7 to identify candidate genes responsible for pathogenesis, to develop better methods of strain detection and to advance our understanding of the evolution of E. coli, through comparison with the genome of the non-pathogenic laboratory strain E. coli K-12 (ref. 5). We find that lateral gene transfer is far more extensive than previously anticipated. In fact, 1,387 new genes encoded in strain-specific clusters of diverse sizes were found in O157:H7. These include candidate virulence factors, alternative metabolic capacities, several prophages and other new functions—all of which could be targets for surveillance.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli

Rodney A. Welch; Valerie Burland; Guy Plunkett; Peter Redford; Paula L. Roesch; David A. Rasko; Eric L. Buckles; S. R. Liou; Adam Boutin; Jeremiah D. Hackett; D. Stroud; George F. Mayhew; Debra J. Rose; Shiguo Zhou; David C. Schwartz; Nicole T. Perna; Harry L. T. Mobley; Michael S. Donnenberg; Frederick R. Blattner

We present the complete genome sequence of uropathogenic Escherichia coli, strain CFT073. A three-way genome comparison of the CFT073, enterohemorrhagic E. coli EDL933, and laboratory strain MG1655 reveals that, amazingly, only 39.2% of their combined (nonredundant) set of proteins actually are common to all three strains. The pathogen genomes are as different from each other as each pathogen is from the benign strain. The difference in disease potential between O157:H7 and CFT073 is reflected in the absence of genes for type III secretion system or phage- and plasmid-encoded toxins found in some classes of diarrheagenic E. coli. The CFT073 genome is particularly rich in genes that encode potential fimbrial adhesins, autotransporters, iron-sequestration systems, and phase-switch recombinases. Striking differences exist between the large pathogenicity islands of CFT073 and two other well-studied uropathogenic E. coli strains, J96 and 536. Comparisons indicate that extraintestinal pathogenic E. coli arose independently from multiple clonal lineages. The different E. coli pathotypes have maintained a remarkable synteny of common, vertically evolved genes, whereas many islands interrupting this common backbone have been acquired by different horizontal transfer events in each strain.


Science | 2006

Emergent properties of reduced-genome Escherichia coli

György Pósfai; Guy Plunkett; Tamás Fehér; David Frisch; Günther M. Keil; Kinga Umenhoffer; Vitaliy Kolisnychenko; Buffy Stahl; Shamik S. Sharma; Monika de Arruda; Valerie Burland; Sarah W. Harcum; Frederick R. Blattner

With the use of synthetic biology, we reduced the Escherichia coli K-12 genome by making planned, precise deletions. The multiple-deletion series (MDS) strains, with genome reductions up to 15%, were designed by identifying nonessential genes and sequences for elimination, including recombinogenic or mobile DNA and cryptic virulence genes, while preserving good growth profiles and protein production. Genome reduction also led to unanticipated beneficial properties: high electroporation efficiency and accurate propagation of recombinant genes and plasmids that were unstable in other strains. Eradication of stress-induced transposition evidently stabilized the MDS genomes and provided some of the new properties.


Infection and Immunity | 2003

Complete Genome Sequence and Comparative Genomics of Shigella flexneri Serotype 2a Strain 2457T

J. Wei; Marcia B. Goldberg; Valerie Burland; Malabi M. Venkatesan; Wen Deng; G. Fournier; George F. Mayhew; Guy Plunkett; Debra J. Rose; Aaron E. Darling; Bob Mau; Nicole T. Perna; Shelley M. Payne; L. J. Runyen-Janecky; Shiguo Zhou; David C. Schwartz; Frederick R. Blattner

ABSTRACT We determined the complete genome sequence of Shigella flexneri serotype 2a strain 2457T (4,599,354 bp). Shigella species cause >1 million deaths per year from dysentery and diarrhea and have a lifestyle that is markedly different from those of closely related bacteria, including Escherichia coli. The genome exhibits the backbone and island mosaic structure of E. coli pathogens, albeit with much less horizontally transferred DNA and lacking 357 genes present in E. coli. The strain is distinctive in its large complement of insertion sequences, with several genomic rearrangements mediated by insertion sequences, 12 cryptic prophages, 372 pseudogenes, and 195 S. flexneri-specific genes. The 2457T genome was also compared with that of a recently sequenced S. flexneri 2a strain, 301. Our data are consistent with Shigella being phylogenetically indistinguishable from E. coli. The S. flexneri-specific regions contain many genes that could encode proteins with roles in virulence. Analysis of these will reveal the genetic basis for aspects of this pathogenic organisms distinctive lifestyle that have yet to be explained.


Nucleic Acids Research | 1993

Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes

Heidi J. Sofia; Valerie Burland; Donna L. Daniels; Guy Plunkett; Frederick R. Blattner

The DNA sequence of a 225.4 kilobase segment of the Escherichia coli K-12 genome is described here, from 76.0 to 81.5 minutes on the genetic map. This brings the total of contiguous sequence from the E.coli genome project to 725.1 kb (76.0 to 92.8 minutes). We found 191 putative coding genes (ORFs) of which 72 genes were previously known, and 110 of which remain unidentified despite literature and similarity searches. Seven new genes--arsE, arsF, arsG, treF, xylR, xylG, and xylH--were identified as well as the previously mapped pit and dctA genes. The arrangement of proposed genes relative to possible promoters and terminators suggests 90 potential transcription units. Other features include 19 REP elements, 95 computer-predicted bends, 50 Chi sites, and one grey hole. Thirty-one putative signal peptides were found, including those of thirteen known membrane or periplasmic proteins. One tRNA gene (proK) and two insertion sequences (IS5 and IS150) are located in this segment. The genes in this region are organized with equal numbers oriented with or against replication.


Journal of Bacteriology | 2003

Comparative Genomics of Salmonella enterica Serovar Typhi Strains Ty2 and CT18

Wen Deng; Shian-Ren Liou; Guy Plunkett; George F. Mayhew; Debra J. Rose; Valerie Burland; Voula Kodoyianni; David C. Schwartz; Frederick R. Blattner

We present the 4.8-Mb complete genome sequence of Salmonella enterica serovar Typhi strain Ty2, a human-specific pathogen causing typhoid fever. A comparison with the genome sequence of recently isolated S. enterica serovar Typhi strain CT18 showed that 29 of the 4,646 predicted genes in Ty2 are unique to this strain, while 84 genes are unique to CT18. Both genomes contain more than 200 pseudogenes; 9 of these genes in CT18 are intact in Ty2, while 11 intact CT18 genes are pseudogenes in Ty2. A half-genome interreplichore inversion in Ty2 relative to CT18 was confirmed. The two strains exhibit differences in prophages, insertion sequences, and island structures. While CT18 carries two plasmids, one conferring multiple drug resistance, Ty2 has no plasmids and is sensitive to antibiotics.


Journal of Bacteriology | 2008

The Complete Genome Sequence of Escherichia coli DH10B: Insights into the Biology of a Laboratory Workhorse

Tim Durfee; Richard Nelson; Schuyler F. Baldwin; Guy Plunkett; Valerie Burland; Bob Mau; Joseph F. Petrosino; Xiang Qin; Donna M. Muzny; Mulu Ayele; Richard A. Gibbs; Bálint Csörgo; György Pósfai; George M. Weinstock; Frederick R. Blattner

Escherichia coli DH10B was designed for the propagation of large insert DNA library clones. It is used extensively, taking advantage of properties such as high DNA transformation efficiency and maintenance of large plasmids. The strain was constructed by serial genetic recombination steps, but the underlying sequence changes remained unverified. We report the complete genomic sequence of DH10B by using reads accumulated from the bovine sequencing project at Baylor College of Medicine and assembled with DNAStars SeqMan genome assembler. The DH10B genome is largely colinear with that of the wild-type K-12 strain MG1655, although it is substantially more complex than previously appreciated, allowing DH10B biology to be further explored. The 226 mutated genes in DH10B relative to MG1655 are mostly attributable to the extensive genetic manipulations the strain has undergone. However, we demonstrate that DH10B has a 13.5-fold higher mutation rate than MG1655, resulting from a dramatic increase in insertion sequence (IS) transposition, especially IS150. IS elements appear to have remodeled genome architecture, providing homologous recombination sites for a 113,260-bp tandem duplication and an inversion. DH10B requires leucine for growth on minimal medium due to the deletion of leuLABCD and harbors both the relA1 and spoT1 alleles causing both sensitivity to nutritional downshifts and slightly lower growth rates relative to the wild type. Finally, while the sequence confirms most of the reported alleles, the sequence of deoR is wild type, necessitating reexamination of the assumed basis for the high transformability of DH10B.


Infection and Immunity | 2001

Complete DNA Sequence and Analysis of the Large Virulence Plasmid of Shigella flexneri

Malabi M. Venkatesan; Marcia B. Goldberg; Debra J. Rose; Erik J. Grotbeck; Valerie Burland; Frederick R. Blattner

ABSTRACT The complete sequence analysis of the 210-kb Shigella flexneri 5a virulence plasmid was determined.Shigella spp. cause dysentery and diarrhea by invasion and spread through the colonic mucosa. Most of the knownShigella virulence determinants are encoded on a large plasmid that is unique to virulent strains of Shigella and enteroinvasive Escherichia coli; these known genes account for approximately 30 to 35% of the virulence plasmid. In the complete sequence of the virulence plasmid, 286 open reading frames (ORFs) were identified. An astonishing 153 (53%) of these were related to known and putative insertion sequence (IS) elements; no known bacterial plasmid has previously been described with such a high proportion of IS elements. Four new IS elements were identified. Fifty putative proteins show no significant homology to proteins of known function; of these, 18 have a G+C content of less than 40%, typical of known virulence genes on the plasmid. These 18 constitute potentially unknown virulence genes. Two alleles of shet2 and five alleles ofipaH were also identified on the plasmid. Thus, the plasmid sequence suggests a remarkable history of IS-mediated acquisition of DNA across bacterial species. The complete sequence will permit targeted characterization of potential new Shigellavirulence determinants.


Gene | 1993

Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli

Shuang-En Chuang; Valerie Burland; Guy Plunkett; Donna L. Daniels; Frederick R. Blattner

Sequences of four new heat-shock (HS) genes of Escherichia coli organized into two operons were determined. The operon at 83 min specifies two proteins of 15.8 kDa (HslT) and 16.1 kDa (HslS), which are identical to IbpA and IbpB, respectively. Expression of mRNA from a sigma 32-dependent promoter of the hslTS/ibpAB operon is stimulated 30-75-fold upon temperature upshift. The transcription start point (tsp) is located at a G, 96 bp upstream from the AUG start codon of hslT/ibpA. The deduced amino acid sequences of HslT/IbpA and HslS/IbpB are 48% identical to each other and were found to be remotely related to the chloroplast low-molecular-weight HS protein, which is highly conserved among plants. The second hs operon is much less actively stimulated by temperature upshift, although it has a hs promoter that perfectly matches the consensus of promoters recognized by sigma 32. Located at 88.9 min, the hslVU operon specifies proteins of 19.1 kDa (HslV) and 49.6 kDa (HslU). Multiple tsp were found in this operon. HslV is remotely related to the eukaryotic proteasome proteins, and HslU is very similar to a Pasteurella haemolytica protein of unknown function. Both HslU and the P. haemolytica protein share a ATP/GTP-binding motif near their N-termini. The two operons described here are transcribed counterclockwise on the standard genetic map.


Molecular Microbiology | 2002

Characterization of Cah, a calcium‐binding and heat‐extractable autotransporter protein of enterohaemorrhagic Escherichia coli

Alfredo G. Torres; Nicole T. Perna; Valerie Burland; Abdul M. Ruknudin; Frederick R. Blattner; James B. Kaper

We have identified and characterized a protein of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7 that shares homology with antigen 43 and AIDA‐I of E. coli. The gene encoding this protein consists of a 2850 bp open reading frame and was named cah for calcium binding antigen 43 homologue. The prototype EHEC strain EDL933 possesses identical duplicate copies of cah (cah1 and cah2), which showed 100% identity at the nucleotide level. We showed that E. coli K‐12 containing the recombinant cah gene produced two proteins, an ≈ 80 kDa outer membrane protein and a 43.0 kDa heat‐extractable protein. The Cah protein contains a predicted 52‐amino‐acid extended signal sequence found in several autotransporter proteins, and N‐terminal sequencing data indicated that the 43.0 kDa passenger protein was derived from cleavage of the signal sequence from alanine at position 53. Phenotypes such as autoaggregation and change in bacterial shape were observed when a recombinant plasmid containing the cah gene was introduced into a laboratory E. coli strain, and these phenotypes were eliminated upon mutation of the cah gene. The passenger domain contains six domains found in calcium‐binding proteins, and the recombinant Cah passenger protein bound 45Ca2+. In E. coli O157:H7, Cah is a heat‐extractable protein, the expression of which is induced in minimal essential media and under divalent ion‐depleting conditions; it also participates in the formation of biofilms. Our results provide insight into the expression, secretion and preliminary features of the calcium‐binding Cah autotransporter protein of EHEC O157:H7.

Collaboration


Dive into the Valerie Burland's collaboration.

Top Co-Authors

Avatar

Frederick R. Blattner

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Guy Plunkett

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Debra J. Rose

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nicole T. Perna

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David C. Schwartz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

George F. Mayhew

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bob Mau

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Adam Boutin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Donna L. Daniels

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shiguo Zhou

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge