Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valérie Combaret is active.

Publication


Featured researches published by Valérie Combaret.


Nature | 2008

Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma

Isabelle Janoueix-Lerosey; Delphine Lequin; Laurence Brugières; Agnès Ribeiro; Loïc de Pontual; Valérie Combaret; Virginie Raynal; Alain Puisieux; Gudrun Schleiermacher; Gaëlle Pierron; Dominique Valteau-Couanet; Thierry Frebourg; Jean Michon; Stanislas Lyonnet; Jeanne Amiel; Olivier Delattre

Neuroblastoma, a tumour derived from the peripheral sympathetic nervous system, is one of the most frequent solid tumours in childhood. It usually occurs sporadically but familial cases are observed, with a subset of cases occurring in association with congenital malformations of the neural crest being linked to germline mutations of the PHOX2B gene. Here we conducted genome-wide comparative genomic hybridization analysis on a large series of neuroblastomas. Copy number increase at the locus encoding the anaplastic lymphoma kinase (ALK) tyrosine kinase receptor was observed recurrently. One particularly informative case presented a high-level gene amplification that was strictly limited to ALK, indicating that this gene may contribute on its own to neuroblastoma development. Through subsequent direct sequencing of cell lines and primary tumour DNAs we identified somatic mutations of the ALK kinase domain that mainly clustered in two hotspots. Germline mutations were observed in two neuroblastoma families, indicating that ALK is a neuroblastoma predisposition gene. Mutated ALK proteins were overexpressed, hyperphosphorylated and showed constitutive kinase activity. The knockdown of ALK expression in ALK-mutated cells, but also in cell lines overexpressing a wild-type ALK, led to a marked decrease of cell proliferation. Altogether, these data identify ALK as a critical player in neuroblastoma development that may hence represent a very attractive therapeutic target in this disease that is still frequently fatal with current treatments.


Journal of Clinical Oncology | 2009

Overall Genomic Pattern Is a Predictor of Outcome in Neuroblastoma

Isabelle Janoueix-Lerosey; Gudrun Schleiermacher; Evi Michels; Véronique Mosseri; Agnès Ribeiro; Delphine Lequin; Joëlle Vermeulen; Jérôme Couturier; Michel Peuchmaur; Alexander Valent; Dominique Plantaz; Hervé Rubie; Dominique Valteau-Couanet; Caroline Thomas; Valérie Combaret; Raphael Rousseau; Angelika Eggert; Jean Michon; Frank Speleman; Olivier Delattre

PURPOSE For a comprehensive overview of the genetic alterations of neuroblastoma, their association and clinical significance, we conducted a whole-genome DNA copy number analysis. PATIENTS AND METHODS A series of 493 neuroblastoma (NB) samples was investigated by array-based comparative genomic hybridization in two consecutive steps (224, then 269 patients). RESULTS Genomic analysis identified several types of profiles. Tumors presenting exclusively whole-chromosome copy number variations were associated with excellent survival. No disease-related death was observed in this group. In contrast, tumors with any type of segmental chromosome alterations characterized patients with a high risk of relapse. Patients with both numerical and segmental abnormalities clearly shared the higher risk of relapse of segmental-only patients. In a multivariate analysis, taking into account the genomic profile, but also previously described individual genetic and clinical markers with prognostic significance, the presence of segmental alterations with (HR, 7.3; 95% CI, 3.7 to 14.5; P < .001) or without MYCN amplification (HR, 4.5; 95% CI, 2.4 to 8.4; P < .001) was the strongest predictor of relapse; the other significant variables were age older than 18 months (HR, 1.8; 95% CI, 1.2 to 2.8; P = .004) and stage 4 (HR, 1.8; 95% CI, 1.2 to 2.7; P = .005). Finally, within tumors showing segmental alterations, stage 4, age, MYCN amplification, 1p and 11q deletions, and 1q gain were independent predictors of decreased overall survival. CONCLUSION The analysis of the overall genomic pattern, which probably unravels particular genomic instability mechanisms rather than the analysis of individual markers, is essential to predict relapse in NB patients. It adds critical prognostic information to conventional markers and should be included in future treatment stratification.


Modern Pathology | 2002

Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay.

Katleen De Preter; Frank Speleman; Valérie Combaret; John Lunec; Genevieve Laureys; Bert H J Eussen; Nadine Francotte; Julian Board; A. D. J. Pearson; Anne De Paepe; Nadine Van Roy; Jo Vandesompele

Amplification of the proto-oncogene MYCN is a strong adverse prognostic factor in neuroblastoma patients in all tumor stages. The status of the MYCN gene has become an important factor in clinical decision making and therapy stratification. Consequently, fast and accurate assessment of MYCN gene copy number is of the utmost importance and the use of two independent methods to determine MYCN status is recommended. For these reasons we have developed and evaluated a real-time quantitative PCR (Q-PCR) assay as an alternative for time-consuming Southern blot analysis (SB), and as a second independent technique in parallel with fluorescence in situ hybridization (FISH) analysis. Advantages of Q-PCR are a large dynamic range of quantification, no requirement for post-PCR sample handling and the need for very small amounts of starting material. The accuracy of the assay was illustrated by measurement of MYCN single gene copy changes in DNA samples of two patients with 2p deletion and duplication, respectively. Two different detection chemistries i.e., a sequence specific TaqMan probe and a generic DNA binding dye SYBR Green I were evaluated and shown to yield similar results. Also, two different calculation methods for copy number determination were used i.e., the kinetic method and the comparative CT method, and shown to be equivalent. In total, 175 neuroblastoma samples with known MYCN status, as determined by FISH and/or SB, were examined. Q-PCR data were highly concordant with FISH and SB data. In addition to MYCN copy number evaluation, DDX1 and NAG gene copy numbers were determined using a similar Q-PCR strategy. Survival analysis pointed out that DDX1 and/or NAG amplification has no additional adverse effect on prognosis.


Journal of Clinical Oncology | 2005

Unequivocal Delineation of Clinicogenetic Subgroups and Development of a New Model for Improved Outcome Prediction in Neuroblastoma

Jo Vandesompele; Michael Baudis; Katleen De Preter; Nadine Van Roy; Peter F. Ambros; Nick Bown; Christian Brinkschmidt; Holger Christiansen; Valérie Combaret; Maria Lastowska; James Nicholson; Anne O'Meara; Dominique Plantaz; Raymond L. Stallings; Bénédicte Brichard; Caroline Van den Broecke; Sylvia De Bie; Anne De Paepe; Genevieve Laureys; Frank Speleman

PURPOSE Neuroblastoma is a genetically heterogeneous pediatric tumor with a remarkably variable clinical behavior ranging from widely disseminated disease to spontaneous regression. In this study, we aimed for comprehensive genetic subgroup discovery and assessment of independent prognostic markers based on genome-wide aberrations detected by comparative genomic hybridization (CGH). MATERIALS AND METHODS Published CGH data from 231 primary untreated neuroblastomas were converted to a digitized format suitable for global data mining, subgroup discovery, and multivariate survival analyses. RESULTS In contrast to previous reports, which included only a few genetic parameters, we present here for the first time a strategy that allows unbiased evaluation of all genetic imbalances detected by CGH. The presented approach firmly established the existence of three different clinicogenetic subgroups and indicated that chromosome 17 status and tumor stage were the only independent significant predictors for patient outcome. Important new findings were: (1) a normal chromosome 17 status as a delineator of a subgroup of presumed favorable-stage tumors with highly increased risk; (2) the recognition of a survivor signature conferring 100% 5-year survival for stage 1, 2, and 4S tumors presenting with whole chromosome 17 gain; and (3) the identification of 3p deletion as a hallmark of older age at diagnosis. CONCLUSION We propose a new regression model for improved patient outcome prediction, incorporating tumor stage, chromosome 17, and amplification/deletion status. These findings may prove highly valuable with respect to more reliable risk assessment, evaluation of clinical results, and optimization of current treatment protocols.


Nature Genetics | 2015

Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations

Thomas F. Eleveld; Derek A. Oldridge; Virginie Bernard; Jan Koster; Leo Colmet Daage; Sharon J. Diskin; Linda Schild; Nadia Bessoltane Bentahar; Angela Bellini; Mathieu Chicard; Eve Lapouble; Valérie Combaret; Patricia Legoix-Né; Jean Michon; Trevor J. Pugh; Lori S. Hart; JulieAnn Rader; Edward F. Attiyeh; Jun S. Wei; Shile Zhang; Arlene Naranjo; Julie M. Gastier-Foster; Michael D. Hogarty; Shahab Asgharzadeh; Malcolm A. Smith; Jaime M. Guidry Auvil; Thomas B. K. Watkins; Danny A. Zwijnenburg; Marli E. Ebus; Peter van Sluis

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.


Journal of Clinical Oncology | 2003

Quality Assessment of Genetic Markers Used for Therapy Stratification

Inge M. Ambros; Jean Bénard; Maria Guida Boavida; Nick Bown; Huib N. Caron; Valérie Combaret; Jérôme Couturier; C. Darnfors; Olivier Delattre; J. Freeman-Edward; Claudio Gambini; Nicole Gross; Claudia M. Hattinger; Andrea Luegmayr; Joseph Lunec; Tommy Martinsson; Katia Mazzocco; Samuel Navarro; Rosa Noguera; Seamus O'Neill; Ulrike Pötschger; S. Rumpler; F. Speleman; Gian Paolo Tonini; A. Valent; N. Van Roy; Gabriele Amann; B. De Bernardi; Per Kogner; Ruth Ladenstein

PURPOSE Therapy stratification based on genetic markers is becoming increasingly important, which makes commitment to the highest possible reliability of the involved markers mandatory. In neuroblastic tumors, amplification of the MYCN gene is an unequivocal marker that indicates aggressive tumor behavior and is consequently used for therapy stratification. To guarantee reliable and standardized quality of genetic features, a quality-assessment study was initiated by the European Neuroblastoma Quality Assessment (ENQUA; connected to International Society of Pediatric Oncology) Group. MATERIALS AND METHODS One hundred thirty-seven coded specimens from 17 tumors were analyzed in 11 European national/regional reference laboratories using molecular techniques, in situ hybridization, and flow and image cytometry. Tumor samples with divergent results were re-evaluated. RESULTS Three hundred fifty-two investigations were performed, which resulted in 23 divergent findings, 17 of which were judged as errors after re-evaluation. MYCN analyses determined by Southern blot and in situ hybridization led to 3.7% and 4% of errors, respectively. Tumor cell content was not indicated in 32% of the samples, and 11% of seemingly correct MYCN results were based on the investigation of normal cells (eg, Schwann cells). Thirty-eight investigations were considered nonassessable. CONCLUSION This study demonstrated the importance of revealing the difficulties and limitations for each technique and problems in interpreting results, which are crucial for therapeutic decisions. Moreover, it led to the formulation of guidelines that are applicable to all kinds of tumors and that contain the standardization of techniques, including the exact determination of the tumor cell content. Finally, the group has developed a common terminology for molecular-genetic results.


International Journal of Cancer | 2001

Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11q deletion in tumors lacking MYCN amplification

Dominique Plantaz; J Vandesompele; N. Van Roy; Maria Łastowska; Nick Bown; Valérie Combaret; M.C. Favrot; Olivier Delattre; Jean Michon; J. Bénard; Olivier Hartmann; James C. Nicholson; Fiona M. Ross; Christian Brinkschmidt; Genevieve Laureys; H.N. Caron; Katherine K. Matthay; Burt G. Feuerstein; Franki Speleman

We have studied the occurrence and association of 11q deletions with other chromosomal imbalances in Stage 4 neuroblastomas. To this purpose we have performed comparative genomic hybridization (CGH) analysis on 50 Stage 4 neuroblastomas and these data were analyzed together with those from 33 previously published cases. We observed a high incidence of 11q deletion in Stage 4 neuroblastoma without MYCN amplification (59%) whereas 11q loss was only observed in 15% of neuroblastomas with MYCN‐amplification (p = 0.0002) or 11% of cases with 1p deletion detected by CGH (p = 0.0001). In addition, 11q loss showed significant positive correlation with 3p loss (p = 0.0002). Event‐free survival was poor and not significantly different for patients with or without 11q deletion. Our study provides further evidence that Stage 4 neuroblastomas with 11q deletions represent a distinct genetic subgroup that typically shows no MYCN‐amplification nor 1p deletion. Moreover, it shows that neuroblastomas with 11q deletion also often present 3p deletion. This genetic subgroup shows a similar poor prognosis as MYCN amplified 4 neuroblastomas.


Medical and Pediatric Oncology | 2001

Multicentre analysis of patterns of DNA gains and losses in 204 neuroblastoma tumors: how many genetic subgroups are there?

Jo Vandesompele; Frank Speleman; Nadine Van Roy; Genevieve Laureys; Christian Brinkschmidt; Holger Christiansen; F. Lampert; Maria Lastowska; Nick Bown; A. D. J. Pearson; James C. Nicholson; Fiona M. Ross; Valérie Combaret; Olivier Delattre; Bert G. Feuerstein; Dominique Plantaz

PROCEDURE Analysis of comparative genomic hybridization (CGH) data of 120 tumors from four different studies, and data of 84 previously unpublishied tumors, allowed delineation of at least six different genetic subsets of neuroblastomas. RESULTS AND CONCLUSIONS A small number of tumors show no detectable imballances. A second group of tumors presents with gains and losses of whole chromosomes and is found predominantly in prognostically favorable stage 1 and 2 tumors. The remaining groups are characterized by the presence of partial chromosome imbalances, and are found mostly in stage 3, 4, and 4S tumors. The third group shows 17q gain without 11q loss, 1p loss, or MYCN amplification (MNA). The fourth group has 1p deletion or MNA, and finally, a fifth group shows 11q loss without 1p deletion or MNA, and is found mainly in stage 4 tumors. The latter group is significantly associated with losses of 3p, 4p, and 14q.


Journal of Clinical Oncology | 2010

Accumulation of Segmental Alterations Determines Progression in Neuroblastoma

Gudrun Schleiermacher; Isabelle Janoueix-Lerosey; Agnès Ribeiro; Jerzy Klijanienko; Jérôme Couturier; Gaëlle Pierron; Véronique Mosseri; Alexander Valent; Nathalie Auger; Dominique Plantaz; Hervé Rubie; Dominique Valteau-Couanet; Franck Bourdeaut; Valérie Combaret; Christophe Bergeron; Jean Michon; Olivier Delattre

PURPOSE Neuroblastoma is characterized by two distinct types of genetic profiles, consisting of either numerical or segmental chromosome alterations. The latter are associated with a higher risk of relapse, even when occurring together with numerical alterations. We explored the role of segmental alterations in tumor progression and the possibility of evolution from indolent to aggressive genomic types. PATIENTS AND METHODS Array-based comparative genomic hybridization data of 394 neuroblastoma samples were analyzed and linked to clinical data. RESULTS Integration of ploidy and genomic data indicated that pseudotriploid tumors with mixed numerical and segmental profiles may be derived from pseudotriploid tumors with numerical alterations only. This was confirmed by the analysis of paired samples, at diagnosis and at relapse, as in tumors with a purely numerical profile at diagnosis additional segmental alterations at relapse were frequently observed. New segmental alterations at relapse were also seen in patients with segmental alterations at diagnosis. This was not linked to secondary effects of cytotoxic treatments since it occurred even in patients treated with surgery alone. A higher number of chromosome breakpoints were correlated with advanced age at diagnosis, advanced stage of disease, with a higher risk of relapse, and a poorer outcome. CONCLUSION These data provide further evidence of the role of segmental alterations, suggesting that tumor progression is linked to the accumulation of segmental alterations in neuroblastoma. This possibility of genomic evolution should be taken into account in treatment strategies of low- and intermediate-risk neuroblastoma and should warrant biologic reinvestigation at the time of relapse.


Journal of Experimental Medicine | 2009

Netrin-1 acts as a survival factor for aggressive neuroblastoma

Céline Delloye-Bourgeois; Julien Fitamant; Andrea Paradisi; David Cappellen; Sétha Douc-Rasy; Marie-Anne Raquin; Dwayne G. Stupack; Akira Nakagawara; Raphael Rousseau; Valérie Combaret; Alain Puisieux; Dominique Valteau-Couanet; Jean Bénard; Agnès Bernet; Patrick Mehlen

Neuroblastoma (NB), the most frequent solid tumor of early childhood, is diagnosed as a disseminated disease in >60% of cases, and several lines of evidence support the resistance to apoptosis as a prerequisite for NB progression. We show that autocrine production of netrin-1, a multifunctional laminin-related molecule, conveys a selective advantage in tumor growth and dissemination in aggressive NB, as it blocks the proapoptotic activity of the UNC5H netrin-1 dependence receptors. We show that such netrin-1 up-regulation is a potential marker for poor prognosis in stage 4S and, more generally, in NB stage 4 diagnosed infants. Moreover, we propose that interference with the netrin-1 autocrine loop in malignant neuroblasts could represent an alternative therapeutic strategy, as disruption of this loop triggers in vitro NB cell death and inhibits NB metastasis in avian and mouse models.

Collaboration


Dive into the Valérie Combaret's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominique Valteau-Couanet

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge