Valérie Compan
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valérie Compan.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Alexandra Jean; Grégory Conductier; Christine Manrique; Constantin Bouras; Philippe Berta; René Hen; Yves Charnay; Joël Bockaert; Valérie Compan
Anorexia nervosa is a growing concern in mental health, often inducing death. The potential neuronal deficits that may underlie abnormal inhibitions of food intake, however, remain largely unexplored. We hypothesized that anorexia may involve altered signaling events within the nucleus accumbens (NAc), a brain structure involved in reward. We show here that direct stimulation of serotonin (5-hydroxytryptamine, 5-HT) 4 receptors (5-HT4R) in the NAc reduces the physiological drive to eat and increases CART (cocaine- and amphetamine-regulated transcript) mRNA levels in fed and food-deprived mice. It further shows that injecting 5-HT4R antagonist or siRNA-mediated 5-HT4R knockdown into the NAc induced hyperphagia only in fed mice. This hyperphagia was not associated with changes in CART mRNA expression in the NAc in fed and food-deprived mice. Results include that 5-HT4R control CART mRNA expression into the NAc via a cAMP/PKA signaling pathway. Considering that CART may interfere with food- and drug-related rewards, we tested whether the appetite suppressant properties of 3,4-N-methylenedioxymethamphetamine (MDMA, ecstasy) involve the 5-HT4R. Using 5-HT4R knockout mice, we demonstrate that 5-HT4R are required for the anorectic effect of MDMA as well as for the MDMA-induced enhancement of CART mRNA expression in the NAc. Directly injecting CART peptide or CART siRNA into the NAc reduces or increases food consumption, respectively. Finally, stimulating 5-HT4R- and MDMA-induced anorexia were both reduced by injecting CART siRNA into the NAc. Collectively, these results demonstrate that 5-HT4R-mediated up-regulation of CART in the NAc triggers the appetite-suppressant effects of ecstasy.
The Journal of Neuroscience | 2004
Valérie Compan; Mingming Zhou; Régis Grailhe; Russell A. Gazzara; Renee S. Martin; Jay A. Gingrich; Aline Dumuis; Daniela Brunner; Joël Bockaert; René Hen
To study the functions of 5-HT4 receptors, a null mutation was engineered in the corresponding gene. 5-HT4 receptor knock-out mice displayed normal feeding and motor behaviors in baseline conditions but abnormal feeding and locomotor behavior in response to stress and novelty. Specifically, stress-induced hypophagia and novelty-induced exploratory activity were attenuated in the knock-out mice. In addition, pentylenetetrazol-induced convulsive responses were enhanced in the knock-out mice, suggesting an increase in neuronal network excitability. These results provide the first example of a genetic deficit that disrupts the ability of stress to reduce feeding and body weight and suggest that 5-HT4 receptors may be involved in stress-induced anorexia and seizure susceptibility.
European Journal of Neuroscience | 1996
Valérie Compan; Annie Daszuta; Pascal Salin; Michèle Sebben; Joël Bockaert; Aline Dumuis
The regional distribution of 5‐hydroxytryptamine (5‐HT4) receptors labelled with [3H]GR113808 was examined in rat basal ganglia and hippocampus after specific lesions. Lesion of serotonin neurons induced by injections of 5,7‐dihydroxytryptamine into the dorsal and medial raphe nuclei resulted in increased 5‐HT4 receptor binding in most regions examined, compared with controls. More precisely, there was a 78% increase in the rostral but no change in the caudal part of caudate‐putamen, and 83% and 54% increases in the shell and core of the nucleus accumbens respectively. In the substantia nigra, the increase in 5‐HT4 binding was larger (72%) than that in the globus pallidus (32%). In the hippocampus, 63%, 30% and 28% increases were measured in CA2, CA1 and CA3 respectively. Following lesion of dopamine neurons by intranigral injection of 6‐hydroxydopamine, increased 5‐HT4 receptor binding was observed in the caudal (59%), but not the rostral part of caudate‐putamen, as well as in the globus pallidus (93%). Since no decreases in 5‐HT4 receptor density were detected after the dopamine lesion, it was concluded that these receptors are not expressed in dopamine neurons. Kainic acid lesions of the caudate‐putamen were associated with dramatic local decreases in 5‐HT4 receptor binding on the injected side (‐89%), which suggested that striatal neurons express 5‐HT4 receptors. Corresponding decreases of 72 and 20% in receptor density were detected in globus pallidus and substantia nigra, consistent with a presumed localization of 5‐HT4 receptors on striatal GABA neurons projecting to these regions. In the substantia nigra, the decrease in [3H]GR113808 binding was localized to the pars lateralis, indicating that striatal neurons belonging to the cortico‐striato‐nigrotectal pathway, and containing GABA and dynorphin, express 5‐HT4 receptors.
Biological Psychiatry | 2005
Guillaume Lucas; Valérie Compan; Yves Charnay; Rachael L. Neve; Eric J. Nestler; Joël Bockaert; Michel Barrot; Guy Debonnel
BACKGROUND We recently identified a facilitory control exerted by serotonin4 (5-HT4) receptors on the in vivo firing activity of dorsal raphe nucleus (DRN) serotonergic (5-HT) neurons. However, these findings were based on acute administrations of 5-HT4 receptor agonists and antagonists, which were active only in a subpopulation of 5-HT neurons. We had no evidence that this influence was significant when considering the entire DRN, nor if it was persistent after chronic treatments. In addition, the poor distribution of 5-HT4 receptors within the DRN raised the question of the neuroanatomical bases underlying this control. METHODS AND RESULTS Here we show that the subacute intraperitoneal (IP) injection of the 5-HT4 receptor agonists prucalopride (2.5 mg/kg) and RS 67333 (1.5 mg/kg) 30 minutes before the beginning of recordings augment the mean firing rate of DRN neurons by 40% and 66%, respectively. These increases remain stable when the compounds are administered continuously during 3 and 21 days; the effects of the 3-day treatment are blocked by the 5-HT4 receptor antagonist GR 125487 (1000 microg/kg, intravenous [i.v.]). In addition, stereotaxic microinjections of herpes simplex viruses, transformed to overexpress 5-HT4 receptors, increase DRN 5-HT neuronal mean activity when performed in the medial prefrontal cortex (mPFC) but not in the striatum or in the hippocampus. CONCLUSIONS This finding suggests the existence of a 5-HT(4)-dependent activation of DRN that may involve the mPFC, unveiling the 5-HT4 receptor as a putative player in the physiopathology of several disorders related to central 5-HT dysfunction.
European Journal of Neuroscience | 2006
Grégory Conductier; Nicole Dusticier; Guillaume Lucas; Francine Côté; Guy Debonnel; Annie Daszuta; Aline Dumuis; A. Nieoullon; René Hen; Joël Bockaert; Valérie Compan
Decreased serotonin (5‐HT) transmission is thought to underlie several mental diseases, including depression and feeding disorders. However, whether deficits in genes encoding G protein‐coupled receptors may down‐regulate the activity of 5‐HT neurons is unknown currently. Based on recent evidence that stress‐induced anorexia may involve 5‐HT4receptors (5‐HT4R), we measured various aspects of 5‐HT function in 5‐HT4R knock‐out (KO) mice. When compared to dorsal raphe nucleus (DRN) 5‐HT neurons from wild‐type mice, those from 5‐HT4R KO mice exhibited reduced spontaneous electrical activity. This reduced activity was associated with diminished tissue levels of 5‐HT and its main metabolite, 5‐hydroxyindole acetic acid (5‐HIAA). Cumulative, systemic doses of the 5‐HT uptake blocker citalopram, that reduced 5‐HT cell firing by 30% in wild‐type animals, completely inhibited 5‐HT neuron firing in the KO mice. This effect was reversed by administration of the 5‐HT1A receptor (5‐HT1AR) antagonist, WAY100635, in mice of both genotypes. Other changes in DRN of the KO mice included increases in the levels of 5‐HT plasma membrane transporter sites and mRNA, as well as a decrease in the density of 5‐HT1AR sites without any change in 5‐HT1A mRNA content. With the exception of increased 5‐HT turnover index in the hypothalamus and nucleus accumbens and a decreased density of 5‐HT1AR sites in the dorsal hippocampus (CA1) and septum, no major changes were detected in 5‐HT territories of projection, suggesting region‐specific adaptive changes. The mechanisms whereby 5‐HT4R mediate a tonic positive influence on the firing activity of DRN 5‐HT neurons and 5‐HT content remain to be determined.
Brain Research | 1998
Valérie Compan; Louis Segu; Marie-Christine Buhot; Annie Daszuta
Quantitative autoradiography was used to examine possible adaptive changes in serotonin 5-HT1B/1D and 5-HT2A/2C receptor binding sites in adult rat basal ganglia, after partial or severe lesions of serotonergic neurons produced by intraraphe injections of variable amounts of 5,7-dihydroxytryptamine. In controls, the 5-HT1B/1D sites labeled with S-CM-G[125I]TNH2 were evenly distributed in the core and the shell of the nucleus accumbens. The density of 5-HT1B/1D sites was higher in the ventral than dorsal part of the striatum and no regional differences were detected along the rostrocaudal axis of the structure. The 5-HT2A/2C sites labeled with [125I]DOI were preferentially distributed in the mediodorsal striatum and higher densities were detected in the shell than core of the nucleus accumbens. Following 5,7-dihydroxytryptamine injections, there were no changes in binding of either receptor subtype after partial lesions entailing 80-90% 5-HT depletions. After severe 5-HT depletions (over 95%), large increases in 5-HT1B/1D binding were observed in the substantia nigra (78%), but no changes took place in the globus pallidus. Increases in 5-HT1B/1D binding were also detected in the shell of the nucleus accumbens (27%). Similar sized increases in 5-HT2A/2C binding (22%) were restricted to the medial striatum. The present results suggest a preferential association between 5-HT1B/1D receptors and the striatonigral neurons containing substance P, as indicated by the striatal distribution of these receptors and their selective increases in the substantia nigra after severe 5-HT deprivation. We recently proposed a similar relationship between the 5-HT4 receptors and the striatopallidal neurons containing met-enkephalin. Moreover, the increases in 5-HT1B/1D binding in the substantia nigra and in the shell of the nucleus accumbens reinforce the view of an implication of this receptor subtype in motor functions. In contrast, the prominent increases in 5-HT2A/2C binding after severe 5-HT deprivation as restricted to the medial region of the striatum and suggest up-regulation of most probably 5-HT2C receptors in a region implicated in cognitive functions.
Brain Research | 1998
Valérie Compan; Louis Segu; Marie-Christine Buhot; Annie Daszuta
The present study was aimed at comparing the effects of serotonin (5-HT) synthesis blockade using chronic administration of p-chlorophenylalanine (PCPA) and 5,7-dihydroxytryptamine injections of variable volume (3 vs. 6 microl) on the density of NPY immunoreactive (Ir) neurons and binding of [3H]8-OH-DPAT, S-CM-G[125I]TNH2 and [125I]DOI to 5-HT1A, 5-HT1B/1D, and 5-HT2A/2C receptors in rat cortical regions. Three weeks after large but partial (89% depletion in 5-HT tissue concentration) lesions of 5-HT neurons no changes in neither NPY immunoreactivity nor 5-HT receptor binding were detected. The complete 5,7-DHT lesions produced increases in the number of NPY-Ir neurons in the upper regions of the cingular (134%), frontal (140%) and parietal cortex (48%) and corresponding decreases in 5-HT2A/2C binding (16-26%). No changes in 5-HT1A and 5-HT1B/1D binding were observed after lesions of this kind. After PCPA treatment, decreases in NPY-Ir neurons density (22-40%) and increases in 5-HT1A and 5-HT1B/1D receptor binding sites (20-50%) were distributed in both upper and deeper cortical regions. The lack of effect of the partial lesion suggests that spared 5-HT neurons may exert compensatory mechanisms up to a large extent. The changes in NPY immunoreactivity and 5-HT2A/2C binding detected in the upper regions of the cortex after complete 5-HT lesions probably result from local cellular rearrangements, whereas blocking 5-HT synthesis has more widespread influence on NPY neurons and on 5-HT1A and 5-HT1B/1D receptor subtypes. Moreover, decreases in DOPAC concentrations detected only after complete lesions suggest that the involvement of catecholaminergic transmission may also differentiate 5,7-DHT and PCPA treatments. Altogether, these data suggest that different receptor subtypes might be involved in 5-HT-NPY relationships.
Neuropsychopharmacology | 2005
Grégory Conductier; Cyril Crosson; René Hen; Joël Bockaert; Valérie Compan
3,4-Methylenedioxy-N-methamphetamine (MDMA or ‘ecstasy’) is a psychoactive substance, first described as an appetite suppressant in humans, inducing side effects and even death. MDMA increases serotonin (5-HT) levels, and 5-HT inhibits food intake, but the 5-HT receptors involved in MDMA-induced changes in feeding behavior are unknown. We examined whether a systemic MDMA injection would reduce the physiological drive to eat in starved mice and tested if the inactivation of 5-HT1B or 5-HT2C receptors could restore this response. Our results indicate that in starved mice, MDMA (10 mg/kg) provoked an initial hypophagia for 1 h (−77%) followed by a period of hyperphagia (studied between 1 and 3 h). This biphasic feeding behavior due to MDMA treatment was maintained in 5-HT1B receptor-null mice or in animals treated with the 5-HT1B/1D receptor antagonist GR127935 (3 or 10 mg/kg). In contrast, MDMA-induced hypophagia (for the first 1 h period) was suppressed when combined with the 5-HT2C receptor antagonist RS102221 (2 mg/kg). However, RS102221 did not alter MDMA-induced hyperphagia (for the 1–3 h period) but did exert a stimulant effect, when administered alone, during that period. We have previously shown that MDMA or 5-HT1A/1B receptor agonist RU24969 fails to stimulate locomotor activity in 5-HT1B receptor-null mice. Our present data indicate that the 5-HT2C receptor antagonist RS102221 suppresses MDMA-induced hyperlocomotion. These findings provide the first evidence that the inactivation of 5-HT2C receptors may reduce hypophagia and motor response to MDMA, while a genetic deficit or pharmacological inactivation of 5-HT1B receptors was insufficient to alter the feeding response to MDMA.
Peptides | 2006
Patrick A. Keller; Valérie Compan; Joël Bockaert; Jean-Paul Giacobino; Yves Charnay; Constantin Bouras; Françoise Assimacopoulos-Jeannet
Cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the brain and various endocrine tissues. CART is implicated in many physiological functions including food intake, drug reward, stress and nociception. No CART receptor has been identified yet. We fused CART(55-102) to the green fluorescent protein (GFP) and found that the ligand suppresses significantly food intake after intracerebroventricular (i.c.v.) injection in mice. Using this ligand, we show specific CART binding sites on HepG2 cells and hypothalamic dissociated cells. In brain sections, CART displaceable binding sites were observed on cell bodies mainly localized in hypothalamic periventricular areas.
PLOS ONE | 2008
Karine Toupet; Valérie Compan; Carole Crozet; Chantal Mourton-Gilles; Nadine Mestre-Francés; Françoise Ibos; Pierre Corbeau; Jean-Michel Verdier; Véronique Perrier
Classical drug therapies against prion diseases have encountered serious difficulties. It has become urgent to develop radically different therapeutic strategies. Previously, we showed that VSV-G pseudotyped FIV derived vectors carrying dominant negative mutants of the PrP gene are efficient to inhibit prion replication in chronically prion-infected cells. Besides, they can transduce neurons and cells of the lymphoreticular system, highlighting their potential use in gene therapy approaches. Here, we used lentiviral gene transfer to deliver PrPQ167R virions possessing anti-prion properties to analyse their efficiency in vivo. Since treatment for prion diseases is initiated belatedly in human patients, we focused on the development of a curative therapeutic protocol targeting the late stage of the disease, either at 35 or 105 days post-infection (d.p.i.) with prions. We observed a prolongation in the lifespan of the treated mice that prompted us to develop a system of cannula implantation into the brain of prion-infected mice. Chronic injections of PrPQ167R virions were done at 80 and 95 d.p.i. After only two injections, survival of the treated mice was extended by 30 days (20%), accompanied by substantial improvement in behaviour. This delay was correlated with: (i) a strong reduction of spongiosis in the ipsilateral side of the brain by comparison with the contralateral side; and (ii) a remarkable decrease in astrocytic gliosis in the whole brain. These results suggest that chronic injections of dominant negative lentiviral vectors into the brain, may be a promising approach for a curative treatment of prion diseases.