Valérie Desauziers
Mines ParisTech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valérie Desauziers.
Journal of Chromatography A | 1998
Gaëtane Lespes; Valérie Desauziers; Cédric Montigny; Martine Potin-Gautier
Abstract This paper deals with the optimization of solid-phase microextraction (SPME) for organotin speciation in water. The analytical method consists of an in situ ethylation, simultaneous solid-phase microextraction of the derivatives, followed by a gas chromatographic analysis with flame photometric detection. Experimental design methodology was used to evaluate the influence of six analytical parameters on the mean peak area (Smean). The adsorption of the compounds on the SPME fibre was found to be the most important parameter and two other factors are positively significant: the adsorption time and the sample volume. The adsorption profiles and the optimal operating conditions were determined from the modelling of Smean. The detection limits range from 2 to 4 ng l−1 (monophenyltin excepted: 18 ng l−1) and linearity is from 50 to 600 ng l−1. The relative standard deviations are 7–10% for five determinations. Water samples were analysed in order to verify the accuracy of the optimized method by comparing results with those obtained using a conventional solvent extraction of the ethylated organotins.
Journal of Environmental Monitoring | 2006
Virginie Larroque; Valérie Desauziers; Pierre Mocho
Solid-phase microextraction (SPME) was studied for the measurement of volatile organic compounds (VOCs) in indoor air. An adsorptive PDMS/Carboxen fibre was used and an analytical methodology was developed in order to overcome competitive adsorption. Kinetics and adsorption isotherms were investigated for different sample volumes and model compounds. In order to evaluate competitive adsorption on the fibre, these compounds were studied alone and in mixture. From the results obtained, the operating conditions allowing co-adsorption of the target compounds were determined: the air sample is enclosed in a 250 mL glass bulb where the SPME fibre is exposed until adsorption equilibrium. This procedure was combined with GC/MS analysis for the identification and quantification of VOCs in indoor air. The performances were determined by using a standard gas containing 10 VOCs representative of indoor environments (acetaldehyde, acetone, BTX, alpha-pinene, trichloroethylene, alkanes). The detection limits were determined in single ion monitoring mode and for a signal to noise ratio of 3. Except acetaldehyde (6 microg m(-3)), they are all below 0.5 microg m(-3). Calibration curves are linear up to 10 micromol m(-3) for all the compounds with good correlation coefficients (above 0.99). The reproducibility ranges from 6 to 12% according to the compound. The methodology was then applied to the comparison of the VOCs content in classrooms of two different schools.
Journal of Chromatography A | 2003
François Lestremau; Valérie Desauziers; Jean-Claude Roux; Jean-Louis Fanlo
A quantification method for malodorous sulphur compounds in gaseous industrial effluents using solid-phase microextraction sampling followed by gas chromatography-pulsed flame photometric detection has been developed. A comparative study showed that polydimethylsiloxane-Carboxen fibre led to sufficient sensitivity to achieve the microg m(-3) human perception levels of the five analytes studied (hydrogen sulphide, methanethiol, ethanethiol, dimethyl sulphide, dimethyl disulphide). However, this coating is known to suffer from competitive adsorption, which may lead to inaccurate quantification. Therefore, external calibration can only be used under a limited range of concentrations, which were determined from Ficks diffusion law. This approach was tested on a real gaseous sample and compared with the standard addition method. Good correlations were found for ethanethiol, dimethyl sulphide and dimethyl disulphide. However, for more volatile sulphur compounds (i.e., hydrogen sulphide and methanethiol), the easy-to-use external calibration could not be applied and standard additions had to be performed for accurate quantification.
Journal of Chromatography A | 2002
Ludovic Tuduri; Valérie Desauziers; Jean Louis Fanlo
Polydimethylsiloxane-Carboxen solid-phase microextraction fibers are now well known to be very efficient trapping media for the analysis of volatile organic compound (VOC) traces in air. However, competitive adsorption, due to the nature of the coating, considerably limits analyte quantitation. In this contribution, different experimental conditions are investigated to achieve quantitative analysis. Static and dynamic sampling were compared for the analysis of 11 VOCs in a standard gaseous mixture at different extraction times (1, 5, 15 and 45 min). The same experiments were performed with four isolated compounds. Adsorption results from gas mixture and isolated compounds were compared and a common linear range (i.e., where quantitative analysis is conceivable) was determined. When sampling was in the dynamic mode, compounds with lower affinity for the coating showed a very narrow linear range, meaning that competition for adsorption was quickly discriminative. The same experiments in static mode allowed one to obtain wider linear ranges for all compounds, especially for lower-affinity compounds: for a 1 min sampling time, acetone showed a linear adsorption range from 3 to 60 microg m(-3) in the dynamic mode which extended from 5 to 300 microg m(-3) in the static mode.
Journal of Chromatography A | 2008
Jérôme Nicolle; Valérie Desauziers; Pierre Mocho
A new sampling method was developed for a simple and fast evaluation of volatile organic compounds (VOCs) emitted at trace levels from building materials. The device involves an emission cell coupled with solid phase microextraction (SPME) for diffusive sampling. Owing to possible competitive adsorption of VOCs onto the PDMS-Carboxen fiber used, the co-adsorption conditions were determined through kinetics study of isolated and in mixture compounds. Hence, the linear concentration ranges which ensure reliable quantification were determined from 4.8 to 10mgm(-3)min according to the VOC studied. Thus, the analyst can select the extraction time that fits for his best analytical objectives. For example, sub microgm(-3) limits of detection can be achieved for GC-MS analysis for 20min extraction. On the other hand, 5min sampling is sufficient for a rapid screening of the major emitted VOCs, since the average limit of quantification reaches 20microgm(-3) for GC-FID analysis.
Journal of Hazardous Materials | 2014
Delphine Bourdin; Pierre Mocho; Valérie Desauziers; Hervé Plaisance
The purpose of this paper was to investigate formaldehyde emission behavior of building materials from on-site measurements of air phase concentration at material surface used as input data of a box model to estimate the indoor air pollution of a newly built classroom. The relevance of this approach was explored using CFD modeling. In this box model, the contribution of building materials to indoor air pollution was estimated with two parameters: the convective mass transfer coefficient in the material/air boundary layer and the on-site measurements of gas phase concentration at material surfaces. An experimental method based on an emission test chamber was developed to quantify this convective mass transfer coefficient. The on-site measurement of gas phase concentration at material surface was measured by coupling a home-made sampler to SPME. First results had shown an accurate estimation of indoor formaldehyde concentration in this classroom by using a simple box model.
Analyst | 2001
François Lestremau; Valérie Desauziers; Jean Louis Fanlo
Solid-phase micro extraction (SPME) is a promising technique for fast and low cost trace analysis. However, some limitations of the technique were encountered when using a PDMS (polydimethylsiloxane)/Carboxen fibre for sampling a mixture of volatile aliphatic amines in air. On the GC chromatogram, two supplementary peaks were noticed in addition to the analyte peaks, thus limiting qualitative and quantitative analysis in this particular case. This paper presents the investigations to identify the artefacts and determine the origin of their formation. First, GC-MS identification, by both electron impact and chemical ionisation modes, demonstrated that the two artefacts were unsaturated amines assumed to be formed by a dehydrogenation reaction of the target amines. This reaction was found to occur during thermal desorption of analytes in the GC injection port and to be catalysed by temperature and by metals consisting of the inox (stainless-steel) needle of the SPME device. It was also demonstrated that artefact formation was not significant when using PDMS or PDMS/divinylbenzene fibres. This difference with PDMS/Carboxen fibre can be explained by the high desorption temperature required for this fibre. Moreover, the microporosity of Carboxen induces a longer desorption time which increases the contact between analytes and inox and thereby enhances artefact formation.
Toxicology Letters | 2014
Gaëlle Bardet; Sophie Achard; Thomas Loret; Valérie Desauziers; Isabelle Momas; Nathalie Seta
Airway epithelium lining the nasal cavity plays a pivotal role in respiratory tract defense and protection mechanisms. Air pollution induces alterations linked to airway diseases such as asthma. Only very few in vitro studies to date have succeeded in reproducing physiological conditions relevant to cellular type and chronic atmospheric pollution exposure. We therefore, set up an in vitro model of human Airway Epithelial Cells of Nasal origin (hAECN) close to real human cell functionality, specifically adapted to study the biological effects of exposure to indoor gaseous pollution at the environmental level. hAECN were exposed under air-liquid interface, one, two, or three-times at 24 h intervals for 1 h, to air or formaldehyde (200 μg/m(3)), an indoor air gaseous pollutant. All experiments were ended at day 4, when both cellular viability and cytokine production were assessed. Optimal adherence and confluence of cells were obtained 96 h after cell seeding onto collagen IV-precoated insert. Direct and repeated exposure to formaldehyde did not produce any cellular damage or IL-6 production change, although weak lower IL-8 production was observed only after the third exposure. Our model is significantly better than previous ones due to cell type and the repeated exposure protocol.
Analytical and Bioanalytical Chemistry | 2008
Pierre Mocho; Jérôme Nicolle; Valérie Desauziers
Solid-phase microextraction (SPME) with adsorptive Carboxen/PDMS fibre is a powerful sampling device for volatile organic compounds (VOCs) at trace levels in air. However, owing to competitive adsorption, quantification remains a challenging task. In this area, a theoretical model, based on Fick’s laws and an extended Langmuir equation, is proposed to deal with the adsorption kinetics of acetone/toluene mixture on SPME fibre under various static extraction conditions. The semipredictive model is first used to determine the axial diffusion coefficients of analytes in the sampling device. The model is then tested with a complex VOC mixture, showing good agreement with experimental data.
Analytical Methods | 2015
Jane Vignau-Laulhere; Hervé Plaisance; Pierre Mocho; Katarzyna Raulin; Yves Bigay; Valérie Desauziers
The radial diffusive standard sampler Radiello® filled with Florisil impregnated with 2,4-dinitrophenylhydrazine (DNPH) was evaluated with the goal of survey monitoring the formaldehyde concentration in indoor air for a 4.5 day sampling time. A Radiello® sampler provides measurements with a relative standard deviation of repeatability comprised between 1.5 and 4.0%, a high sampling rate assessed to 98.7 ± 2.8 mL min−1 under standard conditions (temperature: 19.9 ± 0.5 °C and relative humidity: 52.9 ± 3.2%) and a detection limit of 0.5 μg m−3 for a 4.5 day sampling time. The influence of three environmental factors (temperature (T°), relative humidity (RH) and ozone concentration (O3)) on the sampling rate was also evaluated in an exposure chamber following a fractional design of the experiment at two factor levels (low and high). Temperature is found to be the factor leading to the most significant variation of the sampling rate with an effect of +1.8% per °C. From the fractional design of the experiment, a model was set up for expressing the sample rate of Radiello® as a function of significant factors and the uncertainty on the sampling rate was assessed to 11.9% under the domain of tested conditions.