Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valérie E. Paquet is active.

Publication


Featured researches published by Valérie E. Paquet.


Veterinary Microbiology | 2011

Alteration of virulence factors and rearrangement of pAsa5 plasmid caused by the growth of Aeromonas salmonicida in stressful conditions.

Rana K. Daher; Geneviève Filion; Sok Gheck E. Tan; Stéphanie Dallaire-Dufresne; Valérie E. Paquet; Steve J. Charette

Aeromonas salmonicida, a fish pathogen, is the causative agent of furunculosis. It was already shown that growing this bacterium in stressful conditions such as temperature above 22°C might lead to virulence attenuation. Unfortunately, many veterinary microbiology services and reference centers still routinely cultivate A. salmonicida at 25°C. Here we tested the presence of virulence factors by growth on specific medium as well as the integrity of the pAsa5 plasmid, which bears an important virulence factor, the type III secretion system (TTSS), by PCR analysis in twenty strains, most of which were grown at 25°C in their laboratory of origin. The analysis revealed that strains, which encountered the more stressful growth conditions displayed the most frequent absence of A-layer protein and secreted proteolytic activity. Moreover, many strains had lost parts of the pAsa5 plasmid in which the TTSS region was almost always affected. To confirm the effect of stressful growth conditions on the plasmid, three strains with an intact pAsa5 were cultured at 25°C for two weeks. A low but significant fraction of the tested colonies displayed pAsa5 rearrangements. The rearrangement always affected the TTSS region and led to a loss of virulence in the Dictyostelium discoideum co-culture assay. These results demonstrate that the instability of pAsa5 did not lead to its complete loss as previously proposed but to a more complex rearrangement phenomenon and emphasizes the necessity to grow A. salmonicida in appropriate conditions to preserve the complete virulence of the bacterium.


Antimicrobial Agents and Chemotherapy | 2014

Detection of Variants of the pRAS3, pAB5S9, and pSN254 Plasmids in Aeromonas salmonicida subsp. salmonicida: Multidrug Resistance, Interspecies Exchanges, and Plasmid Reshaping

Antony T. Vincent; Mélanie V. Trudel; Valérie E. Paquet; Brian Boyle; Katherine H. Tanaka; Stéphanie Dallaire-Dufresne; Rana K. Daher; Michel Frenette; Nicolas Derome; Steve J. Charette

ABSTRACT The ubiquitous water-borne Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a worldwide disease in fish farms. Plasmids carrying antibiotic resistance genes have already been described for this bacterium. The aim of the present study was to identify and characterize additional multidrug resistance plasmids in A. salmonicida subsp. salmonicida. We sequenced the plasmids present in two multiple antibiotic-resistant isolates using high-throughput technologies. We also investigated 19 other isolates with various multidrug resistance profiles by genotyping PCR and assessed their resistance to tetracycline. We identified variants of the pAB5S9 and pSN254 plasmids that carry several antibiotic resistance genes and that have been previously reported in bacteria other than A. salmonicida subsp. salmonicida, which suggests a high level of interspecies exchange. Genotyping analyses and the antibiotic resistance profiles of the 19 other isolates support the idea that multiple versions of pAB5S9 and pSN254 exist in A. salmonicida subsp. salmonicida. We also identified variants of the pRAS3 plasmid. The present study revealed that A. salmonicida subsp. salmonicida harbors a wide variety of plasmids, which suggests that this ubiquitous bacterium may contribute to the spread of antibiotic resistance genes in the environment.


Eukaryotic Cell | 2013

Lipid Composition of Multilamellar Bodies Secreted by Dictyostelium discoideum Reveals Their Amoebal Origin

Valérie E. Paquet; René Lessire; Frédéric Domergue; Laetitia Fouillen; Geneviève Filion; Ahmadreza Sedighi; Steve J. Charette

ABSTRACT When they are fed with bacteria, Dictyostelium discoideum amoebae produce and secrete multilamellar bodies (MLBs), which are composed of membranous material. It has been proposed that MLBs are a waste disposal system that allows D. discoideum to eliminate undigested bacterial remains. However, the real function of MLBs remains unknown. Determination of the biochemical composition of MLBs, especially lipids, represents a way to gain information about the role of these structures. To allow these analyses, a protocol involving various centrifugation procedures has been developed to purify secreted MLBs from amoeba-bacterium cocultures. The purity of the MLB preparation was confirmed by transmission electron microscopy and by immunofluorescence using H36, an antibody that binds to MLBs. The lipid and fatty acid compositions of pure MLBs were then analyzed by high-performance thin-layer chromatography (HPTLC) and gas chromatography (GC), respectively, and compared to those of amoebae as well as bacteria used as a food source. While the bacteria were devoid of phosphatidylcholine (PC) and phosphatidylinositol (PI), these two polar lipid species were major classes of lipids in MLBs and amoebae. Similarly, the fatty acid composition of MLBs and amoebae was characterized by the presence of polyunsaturated fatty acids, while cyclic fatty acids were found only in bacteria. These results strongly suggest that the lipids constituting the MLBs originate from the amoebal metabolism rather than from undigested bacterial membranes. This opens the possibility that MLBs, instead of being a waste disposal system, have unsuspected roles in D. discoideum physiology.


Canadian Journal of Microbiology | 2011

[Dictyostelium discoideum: a model for the study of bacterial virulence].

Stéphanie Dallaire-Dufresne; Valérie E. Paquet; Steve J. Charette

The amoeba Dictyostelium discoideum, a bacterial predator, has emerged as a valuable tool for studying bacterial virulence. All its features make this unicellular eukaryote a versatile model organism. It can be used to study virulence factors of pathogenic bacteria as well as host elements involved in resistance to pathogens. The virulence of more than 20 bacterial species pathogenic for humans or animals has been studied using D. discoideum so far. These bacteria are either extracellular or intracellular pathogens. This review presents an overview of the question, with special emphasis on the reasons why D. discoideum is a suitable host model to study bacterial virulence, as well as on the type of information on host–pathogen relationship this amoeba can provide.


Applied and Environmental Microbiology | 2016

Packaging of Campylobacter jejuni into Multilamellar Bodies by the Ciliate Tetrahymena pyriformis

Hana Trigui; Valérie E. Paquet; Steve J. Charette; Sebastien P. Faucher

ABSTRACT Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide. Transmission to humans occurs through consumption of contaminated food or water. The conditions affecting the persistence of C. jejuni in the environment are poorly understood. Some protozoa package and excrete bacteria into multilamellar bodies (MLBs). Packaged bacteria are protected from deleterious conditions, which increases their survival. We hypothesized that C. jejuni could be packaged under aerobic conditions by the amoeba Acanthamoeba castellanii or the ciliate Tetrahymena pyriformis, both of which are able to package other pathogenic bacteria. A. castellanii did not produce MLBs containing C. jejuni. In contrast, when incubated with T. pyriformis, C. jejuni was ingested, packaged in MLBs, and then expelled into the milieu. The viability of the bacteria inside MLBs was confirmed by microscopic analyses. The kinetics of C. jejuni culturability showed that packaging increased the survival of C. jejuni up to 60 h, in contrast to the strong survival defect seen in ciliate-free culture. This study suggests that T. pyriformis may increase the risk of persistence of C. jejuni in the environment and its possible transmission between different reservoirs in food and potable water through packaging.


Scientific Reports | 2017

Characterization and diversity of phages infecting Aeromonas salmonicida subsp. salmonicida

Antony T. Vincent; Valérie E. Paquet; Alex Bernatchez; Denise M. Tremblay; Sylvain Moineau; Steve J. Charette

Phages infecting Aeromonas salmonicida subsp. salmonicida, the causative agent of the fish disease furunculosis, have been isolated for decades but very few of them have been characterized. Here, the host range of 12 virulent phages, including three isolated in the present study, was evaluated against a panel of 65 A. salmonicida isolates, including representatives of the psychrophilic subspecies salmonicida, smithia, masoucida, and the mesophilic subspecies pectinolytica. This bacterial set also included three isolates from India suspected of being members of a new subspecies. Our results allowed to elucidate a lytic dichotomy based on the lifestyle of A. salmonicida (mesophilic or psychrophilic) and more generally, on phage types (lysotypes) for the subspecies salmonicida. The genomic analyses of the 12 phages from this study with those available in GenBank led us to propose an A. salmonicida phage pan-virome. Our comparative genomic analyses also suggest that some phage genes were under positive selection and A. salmonicida phage genomes having a discrepancy in GC% compared to the host genome encode tRNA genes to likely overpass the bias in codon usage. Finally, we propose a new classification scheme for A. salmonicida phages.


FEMS Microbiology Ecology | 2016

Amoeba-resisting bacteria found in multilamellar bodies secreted by Dictyostelium discoideum: social amoebae can also package bacteria

Valérie E. Paquet; Steve J. Charette

Many bacteria can resist phagocytic digestion by various protozoa. Some of these bacteria (all human pathogens) are known to be packaged in multilamellar bodies produced in the phagocytic pathway of the protozoa and that are secreted into the extracellular milieu. Packaged bacteria are protected from harsh conditions, and the packaging process is suspected to promote bacterial persistence in the environment. To date, only a limited number of protozoa, belonging to free-living amoebae and ciliates, have been shown to perform bacteria packaging. It is still unknown if social amoebae can do bacteria packaging. The link between the capacity of 136 bacterial isolates to resist the grazing of the social amoeba Dictyostelium discoideum and to be packaged by this amoeba was investigated in the present study. The 45 bacterial isolates displaying a resisting phenotype were tested for their capacity to be packaged. A total of seven isolates from Cupriavidus, Micrococcus, Microbacterium and Rathayibacter genera seemed to be packaged and secreted by D. discoideum based on immunofluorescence results. Electron microscopy confirmed that the Cupriavidus and Rathayibacter isolates were formally packaged. These results show that social amoebae can package some bacteria from the environment revealing a new aspect of microbial ecology.


PLOS ONE | 2016

Identification of Proteins Associated with Multilamellar Bodies Produced by Dictyostelium discoideum.

Alix M. Denoncourt; Valérie E. Paquet; Ahmadreza Sedighi; Steve J. Charette

Dictyostelium discoideum amoebae produce and secrete multilamellar bodies (MLBs) when fed digestible bacteria. The aim of the present study was to elucidate the proteic content of MLBs. The lipid composition of MLBs is mainly amoebal in origin, suggesting that MLB formation is a protozoa-driven process that could play a significant role in amoebal physiology. We identified four major proteins on purified MLBs using mass spectrometry in order to better understand the molecular mechanisms governing MLB formation and, eventually, to elucidate the true function of MLBs. These proteins were SctA, PhoPQ, PonC and a protein containing a cytidine/deoxycytidylate deaminase (CDD) zinc-binding region. SctA is a component of pycnosomes, which are membranous materials that are continuously secreted by amoebae. The presence of SctA on MLBs was confirmed by immunofluorescence and Western blotting using a specific anti-SctA antibody. The CDD protein may be one of the proteins recognized by the H36 antibody, which was used as a MLB marker in a previous study. The function of the CDD protein is unknown. Immunofluorescence and flow cytometric analyses confirmed that the H36 antibody is a better marker of MLBs than the anti-SctA antibody. This study is an additional step to elucidate the potential role of MLBs and revealed that only a small set of proteins appeared to be present on MLBs.


Journal of Cell Science | 2014

Defective lysosome maturation and Legionella pneumophila replication in Dictyostelium cells mutant for the Arf GAP ACAP-A

Nathalie Baïlo; Pierre Cosson; Steve J. Charette; Valérie E. Paquet; Patricia Doublet; François Letourneur

ABSTRACT Dictyostelium discoideum ACAP-A is an Arf GTPase-activating protein (GAP) involved in cytokinesis, cell migration and actin cytoskeleton dynamics. In mammalian cells, ACAP family members regulate endocytic protein trafficking. Here, we explored the function of ACAP-A in the endocytic pathway of D. discoideum. In the absence of ACAP-A, the efficiency of fusion between post-lysosomes and the plasma membrane was reduced, resulting in the accumulation of post-lysosomes. Moreover, internalized fluid-phase markers showed extended intracellular transit times, and the transfer kinetics of phagocyted particles from lysosomes to post-lysosomes was reduced. Neutralization of lysosomal pH, one essential step in lysosome maturation, was also delayed. Whereas expression of ACAP-A–GFP in acapA− cells restored normal particle transport kinetics, a mutant ACAP-A protein with no GAP activity towards the small GTPase ArfA failed to complement this defect. Taken together, these data support a role for ACAP-A in maturation of lysosomes into post-lysosomes through an ArfA-dependent mechanism. In addition, we reveal that ACAP-A is required for efficient intracellular growth of Legionella pneumophila, a pathogen known to subvert the endocytic host cell machinery for replication. This further emphasizes the role of ACAP-A in the endocytic pathway.


Fems Microbiology Letters | 2017

Packaging of Mycobacterium smegmatis bacteria into fecal pellets by the ciliate Tetrahymena pyriformis

Alix M. Denoncourt; Valérie E. Paquet; Steve J. Charette

Mycobacteria are widespread microorganisms that live in various environments, including man-made water systems where they cohabit with protozoa. Environmental mycobacterial species give rise to many opportunistic human infections and can infect phagocytic protozoa. Protozoa such as amoebae and ciliates feeding on bacteria can sometimes get rid of non-digestible or pathogenic material by packaging it into secreted fecal pellets. Usually, packaged bacteria are still viable and are protected against chemical and physical stresses. We report here that mycobacteria can be packaged into pellets by ciliates. The model bacterium Mycobacterium smegmatis survived digestion in food vacuoles of the ciliate Tetrahymena pyriformis and was included in expelled fecal pellets. LIVE/DEAD® staining confirmed that packaged M. smegmatis cells preserved their viability through the process. Scanning and transmission electron microscopy revealed that bacteria are packaged in undefined filamentous and/or laminar substances and that just a thin layer of material seemed to keep the pellet contents in a spherical shape. These results imply that packaging of bacteria is more common than expected, and merits further study to understand its role in persistence and dissemination of pathogens in the environment.

Collaboration


Dive into the Valérie E. Paquet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge