Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valérie Frankard is active.

Publication


Featured researches published by Valérie Frankard.


Plant Molecular Biology | 1999

THE ARABIDOPSIS THALIANA DHDPS GENE ENCODING DIHYDRODIPICOLINATE SYNTHASE,KEY ENZYME OF LYSINE BIOSYNTHESIS, IS EXPRESSED IN A CELL-SPECIFIC MANNER

Marc Vauterin; Valérie Frankard; Michel Jacobs

Lysine synthesis in prokaryotes, some phycomycetes and higher plants starts with the condensation of L-aspartate-β-semialdehyde (L-ASA) and pyruvate into dihydrodipicolinic acid. The enzyme that catalyses this step, dihydrodipicolinate synthase (DHDPS), is inhibited by the end-product lysine and is therefore thought to have a regulatory control on lysine synthesis. We have cloned and sequenced an Arabidopsis thaliana DNA fragment containing 900 bases upstream of the dhdps coding sequence. A transcriptional fusion of this fragment with the β-glucuronidase reporter gene (uidA, Gus) was used to study the transcription properties of this promoter fragment (DS). No lysine-induced repression on transcription could be detected. Expression of DS-Gus activity in transformed Arabidopsis thaliana and Nicotiana tabacum was found to be cell type-specific. In the vegetative parts of the plant, GUS activity was located in meristems and young vasculature of roots, in vasculature of stem and leaves and in the meristems of young shoots. In flowers, high expression was found in the carpels, style, stigma, developing embryos, tapetum of young anthers and pollen. We demonstrated that the Arabidopsis DS promoter can direct its cell type-specific expression in a heterologous plant, Nicotiana tabacum. The importance of transcriptional regulation of the dhdps gene, and in more general genes involved in amino acid biosynthesis, is discussed.


Plant Molecular Biology | 1994

Molecular analysis of the aspartate kinase-homoserine dehydrogenase gene from Arabidopsis thaliana

Marc Ghislain; Valérie Frankard; Dirk Vandenbossche; Benjamin F. Matthews; Michel Jacobs

The gene encoding Arabidopsis thaliana aspartate kinase (ATP:L-aspartate 4-phosphotransferase, EC 2.7.2.4) was isolated from genomic DNA libraries using the carrot ak-hsdh gene as the hybridizing probe. Two genomic libraries from different A. thaliana races were screened independently with the ak probe and the hsdh probe. Nucleotide sequences of the A. thaliana overlapping clones were determined and encompassed 2 kb upstream of the coding region and 300 bp downstream. The corresponding cDNA was isolated from a cDNA library made from poly(A)+-mRNA extracted from cell suspension cultures. Sequence comparison between the Arabidopsis gene product and an AK-HSDH bifunctional enzyme from carrot and from the Escherichia coli thrA and metL genes shows 80%, 37.5% and 31.4% amino acid sequence identity, respectively. The A. thaliana ak-hsdh gene is proposed to be the plant thrA homologue coding for the AK isozyme feedback inhibited by threonine. The gene is present in A. thaliana in single copy and functional as evidenced by hybridization analyses.The apoprotein-coding region is interrupted by 15 introns ranging from 78 to 134 bp. An upstream chloroplast-targeting sequence with low sequence similarity with the carrot transit peptide was identified. A signal sequence is proposed starting from a functional ATG initiation codon to the first exon of the apoprotein. Two additional introns were identified: one in the 5′ non-coding leader sequence and the other in the putative chloroplast targeting sequence. 5′ sequence analysis revealed the presence of several possible promoter elements as well as conserved regulatory motifs. Among these, an Opaque2 and a yeast GCN4-like recognition element might be relevant for such a gene coding for an enzyme limiting the carbon-flux entry to the biosynthesis of several essential amino acids. 3′ sequence analysis showed the occurrence of two polyadenylation signals upstream of the polyadenylation site.This work is the first report of the molecular cloning of a plant ak-hsdh genomic sequence. It describes a promoter element that may bring new insights to the regulation of the biosynthesis of the aspartate family of amino acids.


Planta | 1990

Dihydrodipicolinate synthase of Nicotiana sylvestris, a chloroplast-localized enzyme of the lysine pathway

Marc Ghislain; Valérie Frankard; Michel Jacobs

The first enzyme of the lysine-biosynthesis pathway, dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) has been purified and characterized inNicotiana sylvestris Speggazini et Comes. A purification scheme was developed for the native DHDPS that subsequently led to the purification to homogeneity of its subunits using two-dimensional gel electrophoresis. Subsequent elution of the purified polypeptide has opened the way for the production of rabbit polyclonal anti-DHDPS sera. The molecular weight of the enzyme was determined to be 164000 daltons (Da) by an electrophoretic method. By labeling with [14C]pyruvate, the enzyme was shown to be composed of four identical subunits of 38500 Da. Pyruvate acts as a stabilizing agent and contributes to the preservation of the tetrameric structure of the enzyme. The enzyme ofN. sylvestris is strongly inhibited by lysine with anI0.5 of 15 μM; S-(2-aminoethyl)L-cysteine and γ-hydroxylysine, two lysine analogs, were found to be only weak inhibitors. An analog of pyruvate, 2-oxobutyrate, competitively inhibited the enzyme and was found to act at the level of the pyruvate-binding site. Dihydrodipicolinate synthase was localized in the chloroplast and identified as a soluble stromal enzyme by enzymatic and immunological methods. Its properties are compared with those known for other plant and bacterial DHDPS enzymes.


Theoretical and Applied Genetics | 1991

High threonine producer mutant ofNicotiana sylvestris (Spegg. and Comes)

Valérie Frankard; Marc Ghislain; I. Negrutiu; Michel Jacobs

SummaryMutagenesis and the subsequent selection of mesophyll diploid protoplasts ofNicotiana sylvestris on growth inhibitory concentrations of lysine plus threonine has led to the isolation of an LT-resistant mutant. Regeneration of this line (RLT 70) and analysis of its descendants demonstrated the dominant monogenic nuclear character of the resistance gene, further namedak-LT1. When the inhibition properties of aspartate kinase were examined in the homozygous mutant, lysine-sensitive activity could no longer be detected. In comparison, 70%–80% of the wild-type enzyme activity was usually inhibited by lysine, and the rest by threonine. Evidence for the existence of at least two AK isoenzymes was obtained by ion-exchange chromatography, where two peaks of activity could be detected: the first one to be eluted is lysine sensitive, and the second one threonine sensitive. One consequence of the altered regulation of AK in the mutant was the enhanced production of soluble threonine. Threonine accumulation was observed to occur throughout the life cycle of the mutant plant as well as in its different organs. In particular, leaves exhibited a 45-fold increment of soluble threonine, which corresponds to a 13-fold increase in total threonine: almost one-third of the total amino acids was free and proteinbound threonine. In RLT 70 seeds, 20% of the free amino acid pool was in the form of threonine (70-fold accumulation compared to the wild type), and total threonine content was increased five fold. As a general rule, the other amino acids were also more abundant in RLT 70 seeds, such that the total of amino acids present was between two to four times higher, but in contrast with the situation encountered in leaves, this was also due to a higher protein-bound amino acid content.


Plant Molecular Biology | 1997

Molecular characterization of an Arabidopsis thaliana cDNA coding for a monofunctional aspartate kinase

Valérie Frankard; Marc Vauterin; Michel Jacobs

A cDNA clone encoding a monofunctional aspartate kinase (AK, ATP:L-aspartate 4-phosphotransferase, EC 2.7.2.4) has been isolated from an Arabidopsis thaliana cell suspension cDNA library using a homologous PCR fragment as hybridizing probe. Amplification of the PCR fragment was done using a degenerate primer designed from a conserved region between bacterial monofunctional AK sequences and a primer identical to a region of the A. thaliana bifunctional aspartate kinase-homoserine dehydrogenase (AK-HSDH). By comparing the deduced amino acid sequence of the fragment with the bacterial and yeast corresponding gene products, the highest identity score was found with the Escherichia coli AKIII enzyme that is feedback-inhibited by lysine (encoded by lysC). The absence of HSDH-encoding sequence at the COOH end of the peptide further implies that this new cDNA is a plant lysC homologue. The presence of two homologous genes in A. thaliana is supported by PCR product sequences, Southern blot analysis and by the independent cloning of the corresponding second cDNA (see Tang et al., Plant Molecular Biology 34, pp. 287–294 [this issue]). This work is the first report of cloning a plant putative lysine-sensitive monofunctional AK cDNA. The presence of at least two genes is discussed in relation to possible different physiological roles of their respective product.


Plant Molecular Biology | 2003

Transcriptional and biochemical regulation of a novel Arabidopsis thaliana bifunctional aspartate kinase-homoserine dehydrogenase gene isolated by functional complementation of a yeast hom6 mutant

Sven Erik Rognes; Eric Dewaele; Sten Freddy Aas; Michel Jacobs; Valérie Frankard

An aspartate kinase-homoserine dehydrogenase (AK-HSDH) cDNA of Arabidopsis thaliana has been cloned by functional complementation of a Saccharomyces cerevisiae strain mutated in its homoserine dehydrogenase (HSDH) gene (hom6). Two of the three isolated clones were also able to complement a mutant yeast aspartate kinase (AK) gene (hom3). Sequence analysis showed that the identified gene (akthr2), located on chromosome 4, is different from the previously cloned A.xa0thaliana AK-HSDH gene (akthr1), and corresponds to a novel bifunctional AK-HSDH gene. Expression of the isolated akthr2 cDNA in a HSDH-less hom6 yeast mutant conferred threonine and methionine prototrophy to the cells. Cell-free extracts contained a threonine-sensitive HSDH activity with feedback properties of higher plant type. Correspondingly, cDNA expression in an AK-deficient hom3 yeast mutant resulted in threonine and methionine prototrophy and a threonine-sensitive AK activity was observed in cell-free extracts. These results confirm that akthr2 encodes a threonine-sensitive bifunctional enzyme. Transgenic Arabidopsis thaliana plants (containing a construct with the promoter region of akthr2 in front of the gus reporter gene) were generated to compare the expression pattern of the akthr2 gene with the pattern of akthr1 earlier described in tobacco. The two genes are simultaneously expressed in meristematic cells, leaves and stamens. The main differences between the two genes concern the time-restricted or absent expression of the akthr2 gene in the stem, the gynoecium and during seed formation, while akthr1 is less expressed in roots.


Plant Molecular Biology | 1998

Molecular cloning and expression of a cDNA sequence encoding histidinol phosphate aminotransferase from Nicotiana tabacum

Fatima El Malki; Valérie Frankard; Michel Jacobs

A Nicotiana tabacum cDNA sequence encoding histidinol phosphate aminotransferase (HPA) was isolated by functional complementation of an Escherichia coli histidine auxotroph (UTH780). The enzymatic assay has confirmed that the isolated cDNA encodes a functional HPA protein. Amino acid sequence alignment of the HPA protein from N. tabacum, Saccharomyces cerevisiae and E. coli revealed that, despite the low degree of identity, some residues were found to be highly conserved. The predicted protein contains a transit peptide sequence at the amino-terminal end, suggesting a chloroplastic localization of the HPA enzyme. Western blot analysis demonstrated that the deduced HPA protein and the mature HPA protein have an apparent molecular mass of about 45 kDa and 40 kDa respectively. Gene copy number estimation by Southern analysis indicates the presence of at least two genes per haploid genome coding for this protein in Nicotiana sp. From northern analysis results, the gene seems to be highly expressed in green tissues and the detected transcript showed a single band of expected molecular size.


Phytochemistry Reviews | 2002

Metabolic engineering of a complex biochemical pathway: The lysine and threonine biosynthesis as an example

Eric Dewaele; Adrian Craciun; Marc Vauterin; Valérie Frankard; Emmanuel Suharyanto; Johannes Tadesse; Michel Jacobs

The nutritional quality of crop plants is determined by their content in essential amino acids provided in food for humans or in feed for monogastric animals. Amino acid composition of crop–based diets can be improved via manipulation of the properties of key enzymes of amino acid biosynthetic pathways by mutation and transformation. We focused on the aspartate-derived amino acid pathway producing four essential amino acids: lysine, threonine, isoleucine and methionine. Genes encoding aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS) that operate as key genes of the aspartate pathway have been cloned from Arabidopsis. Genetic and molecular studies revealed that at least five different ak genes are represented. Some of them were characterized in terms of gene and promoter structure, developmental expression and regulatory properties. In the case of dhdps, two quite identical genes have been identified and characterized at expression level. Mutated genes encoding a fully feedback-insensitive form of the DHDPS enzyme were obtained from Nicotiana sylvestris and Arabidopsis. Several chimeric constructs harbouring this mutated allele under the control of constitutive or seed-specific promoters were transferred via Agrobacterium or biolistics in various plant species. In all cases, lines with significant increase of free lysine content were obtained in vegetative organs, but the impact of the transgene in seeds is limited due to the presence of an active catabolic enzyme, lysine ketoreductase. These results show that, although dealing with a complex, highly regulated pathway, the overexpression of a single gene encoding a feedback-insensitive form of the key enzyme DHDPS exerts a significant effect on the carbon flux through the aspartate pathway towards lysine production.


Plant Science | 2002

A defect in cystathionine β-lyase activity causes the severe phenotype of a Nicotiana plumbaginifolia methionine auxotroph

Valérie Frankard; Gabriela Ispas; Holger Hesse; Michel Jacobs; Rainer Hoefgen

In plants and bacteria, methionine (Met) is synthesised through three consecutive reactions starting at the convergence point of one branch of the aspartate pathway and the sulphur reduction pathway. The substrates O-phosphohomoserine and cysteine converge to cystathionine, which is cleaved to homocysteine. Finally, homocysteine is methylated to Met. The second enzymatic step of Met synthesis, the cleavage of cystathionine to homocysteine, pyruvate and ammonia, is catalysed by cystathionine β-lyase (CbL). Here, we report the functional complementation and phenotypical reversion of a Nicotiana plumbaginifolia mutant previously assumed to be defective in CbL activity using a heterologous bacterial protein targeted to the chloroplast. Molecular analysis revealed the stable integration and high expression rate of the chimeric gene in the complemented mutant. Up to 500-fold more CbL activity when compared to wild type was measured in partially purified extracts from the complemented mutant. Despite the high rate of overexpression and the strongly increased enzyme activity the content of Met was restored only to wild type levels. Furthermore, no change in free amino acid composition could be determined. These results are discussed with respect to regulation of the fluxes involved in Met biosynthesis.


Journal of Plant Biochemistry and Biotechnology | 2001

Biochemical Characterisation and Cloning of α-Kafirin Gene from Sorghum (Sorghum bicolor L Moench)

N. P. Eswara Reddy; Marc Vauterin; Valérie Frankard; Michel Jacobs

Seed storage proteins from naturally occurring lysine-rich cultivars namely IS 217O2, CVS 365, G 1058, G 205 and CVS 549 were analyzed biochemically, immunologically and compared with a low-lysine cultivar (White Martin) and a chemically induced high-lysine mutant (P7210). Protein fractionation studies indicated that the high lysine cultivars contained 25% less kafirin and an increased alcohol insoluble reduced glutelin without affecting the total protein content. SDS-PAGE analysis of total kafirin showed the absence of 25.3 kD and 25.9 kD a-kafirin proteins in lysine-rich cultivars IS 217O2, CVS 365 and G 1058, while in G 205 only the 25.9 kD protein was absent compared to low-lysine cultivar White Martin. A genomic clone λGK5 encoding an a-kafirin has been isolated from cv White Martin genomic library using pSKR3 as hybridizing probe and sequenced. Transient expression studies by particle bombardment of immature seeds of sorghum allowed to detect β-glucuronidase (GUS) activity only in endosperm cells confirming that the α-kafirin gene promoter is functional and tissue specific.

Collaboration


Dive into the Valérie Frankard's collaboration.

Top Co-Authors

Avatar

Michel Jacobs

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Marc Ghislain

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Marc Vauterin

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Eric Dewaele

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Adrian Craciun

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Suharyanto

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fatima El Malki

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

I. Negrutiu

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge