Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valérie Gaudin is active.

Publication


Featured researches published by Valérie Gaudin.


Nature Structural & Molecular Biology | 2007

The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation

Xiaoyu Zhang; Sophie Germann; Bartlomiej J Blus; Sepideh Khorasanizadeh; Valérie Gaudin; Steven E. Jacobsen

Polycomb proteins are required for maintenance of silent chromatin states via histone H3 Lys27 trimethylation (H3K27me3) in animals, but homologs are not found in plant genomes. Using a DamID-chip method, we found that the Arabidopsis thaliana chromodomain-containing protein LHP1 colocalizes with H3K27me3 genome-wide. The LHP1 chromodomain also binds H3K27me3 with high affinity, suggesting that LHP1 has functions similar to those of Polycomb.


Planta | 2005

The Arabidopsis LHP1 protein is a component of euchromatin

Marc Libault; Federico Tessadori; Sophie Germann; Berend Snijder; Paul F. Fransz; Valérie Gaudin

The HP1 family proteins are involved in several aspects of chromatin function and regulation in Drosophila, mammals and the fission yeast. Here we investigate the localization of LHP1, the unique Arabidopsis thaliana HP1 homolog known at present time, to approach its function. A functional LHP1–GFP fusion protein, able to restore the wild-type phenotype in the lhp1 mutant, was used to analyze the subnuclear distribution of LHP1 in both A. thaliana and Nicotiana tabacum. In A. thaliana interphase nuclei, LHP1 was predominantly located outside the heterochromatic chromocenters. No major aberrations were observed in heterochromatin content or chromocenter organization in lhp1 plants. These data indicate that LHP1 is mainly involved in euchromatin organization in A. thaliana. In tobacco BY-2 cells, the LHP1 distribution, although in foci, slightly differed suggesting that LHP1 localization is determined by the underlying genome organization of plant species. Truncated LHP1 proteins expressed in vivo allowed us to determine the function of the different segments in the localization. The in foci distribution is dependent on the presence of the two chromo domains, whereas the hinge region has some nucleolus-targeting properties. Furthermore, like the animal HP1β and HP1γ subtypes, LHP1 dissociates from chromosomes during mitosis. In transgenic plants expressing the LHP1–GFP fusion protein, two major localization patterns were observed according to cell types suggesting that localization evolves with age or differentiation states. Our results show conversed characteristics of the A. thaliana HP1 homolog with the mammal HP1γ isoform, besides specific plant properties.


The Plant Cell | 2013

Characterization of the Early Events Leading to Totipotency in an Arabidopsis Protoplast Liquid Culture by Temporal Transcript Profiling

Marie-Christine Chupeau; Fabienne Granier; Olivier Pichon; Jean-Pierre Renou; Valérie Gaudin; Yves Chupeau

An efficient liquid medium gave high plating efficiencies of protoplasts. Transcription profiles of plantlets and protoplast-derived cells during the first week of culture were used to track major molecular processes of the reentry in the cell cycle as the plant cells transitioned toward a totipotent state. Candidate genes for plant cell reprogramming are highlighted. The molecular mechanisms underlying plant cell totipotency are largely unknown. Here, we present a protocol for the efficient regeneration of plants from Arabidopsis thaliana protoplasts. The specific liquid medium used in our study leads to a high rate of reentry into the cell cycle of most cell types, providing a powerful system to study dedifferentiation/regeneration processes in independent somatic cells. To identify the early events in the establishment of totipotency, we monitored the genome-wide transcript profiles of plantlets and protoplast-derived cells (PdCs) during the first week of culture. Plant cells rapidly dedifferentiated. Then, we observed the reinitiation and reorientation of protein synthesis, accompanied by the reinitiation of cell division and de novo cell wall synthesis. Marked changes in the expression of chromatin-associated genes, especially of those in the histone variant family, were observed during protoplast culture. Surprisingly, the epigenetic status of PdCs and well-established cell cultures differed, with PdCs exhibiting rare reactivated transposons and epigenetic changes. The differentially expressed genes identified in this study are interesting candidates for investigating the molecular mechanisms underlying plant cell plasticity and totipotency. One of these genes, the plant-specific transcription factor ABERRANT LATERAL ROOT FORMATION4, is required for the initiation of protoplast division.


Plant Physiology | 2015

The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs

Andreas Hecker; Luise H. Brand; Sébastien Peter; Nathalie Simoncello; Joachim Kilian; Klaus Harter; Valérie Gaudin; Dierk Wanke

A transcription factor forms a scaffold for Polycomb complex members at specific DNA motifs to control homeotic gene expression. Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein BASIC PENTACYSTEINE6 (BPC6) interacts with LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a PRC1 component, and associates with VERNALIZATION2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution.


Chromosome Research | 2003

Chromatin dynamics and Arabidopsis development

Frédéric Berger; Valérie Gaudin

The plant life cycle involves a series of developmental phase transitions. These transitions require the regulation and highly co-ordinated expression of many genes. Epigenetic controls have now been shown to be a key element of this mechanism of regulation. In the model plant Arabidopsis, recent genetic and molecular studies on chromatin have begun to dissect the molecular basis of these epigenetic controls. Chromatin dynamics represent the emerging and exciting field of gene regulation notably involved in plant developmental transitions. By comparing plant and animal systems, new insights into the molecular complexes and mechanisms governing development can be delineated. We are now beginning to identify the components of chromatin complexes and their functions.


Plant Physiology | 2004

Extensive Phenotypic Variation in Early Flowering Mutants of Arabidopsis

Sylvie Pouteau; Valérie Ferret; Valérie Gaudin; Delphine Lefebvre; Mohammed Sabar; Gengchun Zhao; Franck Prunus

Flowering time, the major regulatory transition of plant sequential development, is modulated by multiple endogenous and environmental factors. By phenotypic profiling of 80 early flowering mutants of Arabidopsis, we examine how mutational reduction of floral repression is associated with changes in phenotypic plasticity and stability. Flowering time measurements in mutants reveal deviations from the linear relationship between the number of leaves and number of days to bolting described for natural accessions and late flowering mutants. The deviations correspond to relative early bolting and relative late bolting phenotypes. Only a minority of mutants presents no detectable phenotypic variation. Mutants are characterized by a broad release of morphological pleiotropy under short days, with leaf characters being most variable. They also exhibit changes in phenotypic plasticity across environments for florigenic-related responses, including the reaction to light and dark, photoperiodic behavior, and Suc sensitivity. Morphological pleiotropy and plasticity modifications are differentially distributed among mutants, resulting in a large diversity of multiple phenotypic changes. The pleiotropic effects observed may indicate that floral repression defects are linked to global developmental perturbations. This first, to our knowledge, extensive characterization of phenotypic variation in early flowering mutants correlates with the reports that most factors recruited in floral repression at the molecular genetic level correspond to ubiquitous regulators. We discuss the importance of functional ubiquity for floral repression with respect to robustness and flexibility of network biological systems.


Plant Methods | 2009

3D fluorescent in situ hybridization using Arabidopsis leaf cryosections and isolated nuclei

Leila Tirichine; Philippe Andrey; Eric Biot; Yves Maurin; Valérie Gaudin

BackgroundFluorescent hybridization techniques are widely used to study the functional organization of different compartments within the mammalian nucleus. However, few examples of such studies are known in the plant kingdom. Indeed, preservation of nuclei 3D structure, which is required for nuclear organization studies, is difficult to fulfill.ResultsWe report a rapid protocol for fluorescent in situ hybridization (FISH) performed on 3D isolated nuclei and thin cryosectioned leaves of Arabidopsis thaliana. The use of direct labeling minimized treatment steps, shortening the overall procedure. Using image analysis, we measured different parameters related to nucleus morphology and overall 3D structure.ConclusionOur work describes a 3D-FISH protocol that preserves the 3D structure of Arabidopsis interphase nuclei. Moreover, we report for the first time FISH using cryosections of Arabidopsis leaves. This protocol is a valuable tool to investigate nuclear architecture and chromatin organization.


Plant Molecular Biology | 1995

Expression of Agrobacterium rhizogenes auxin biosynthesis genes in transgenic tobacco plants

Valérie Gaudin; Lise Jouanin

Plant oncogenes aux1 and aux2 carried by the TR-DNA of Agrobacterium rhizogenes strain A4 encode two enzymes involved in the auxin biosynthesis pathway in transformed plant cells. The short divergent promoter region between the two aux-coding sequences contains the main regulatory elements. This region was fused to the uidA reporter gene and introduced into Nicotiana tabacum in order to investigate the regulation and the tissue specificity of these genes. Neither wound nor hormone induction could be detected on transgenic leaf discs. However, phytohormone concentration and auxin/cytokinin balance controlled the expression of the chimaeric genes in transgenic protoplasts. The expression was localised in apical meristems, root tip meristems, lateral root primordia, in cells derived from transgenic protoplasts and in transgenic calli. Histological analysis showed that the expression was located in cells reactivated by in vitro culture. Experiments using cell-cycle inhibitors such as hydroxyurea or aphidicolin on transgenic protoplast cultures highly decreased the β-glucuronidase activity of the chimaeric genes. These results as well as the histological approach suggest a correlation between expression of the aux1 and aux2 genes and cell division.


Plant Physiology | 2008

Diversification of Photoperiodic Response Patterns in a Collection of Early-Flowering Mutants of Arabidopsis

Sylvie Pouteau; Isabelle A. Carré; Valérie Gaudin; Valérie Ferret; Delphine Lefebvre; Melanie Wilson

Many plant species exhibit seasonal variation of flowering time in response to daylength. Arabidopsis (Arabidopsis thaliana) flowers earlier under long days (LDs) than under short days (SDs). This quantitative response to photoperiod is characterized by two parameters, the critical photoperiod (Pc), below which there is a delay in flowering, and the ceiling photoperiod (Pce), below which there is no further delay. Thus Pc and Pce define the thresholds beyond which maximum LD and SD responses are observed, respectively. We studied the quantitative response to photoperiod in 49 mutants selected for early flowering in SDs. Nine of these mutants exhibited normal Pce and Pc, showing that their precocious phenotype was not linked to abnormal measurement of daylength. However, we observed broad diversification in the patterns of quantitative responses in the other mutants. To identify factors involved in abnormal measurement of daylength, we analyzed the association of these various patterns with morphogenetic and rhythmic defects. A high proportion of mutants with altered Pce exhibited abnormal hypocotyl elongation in the dark and altered circadian periods of leaf movements. This suggested that the circadian clock and negative regulators of photomorphogenesis may contribute to the specification of SD responses. In contrast, altered Pc correlated with abnormal hypocotyl elongation in the light and reduced photosynthetic light-input requirements for bolting. This indicated that LD responses may be specified by positive elements of light signal transduction pathways and by regulators of resource allocation. Furthermore, the frequency of circadian defects in mutants with normal photoperiodic responses suggested that the circadian clock may regulate the number of leaves independently of its effect on daylength perception.


Cytogenetic and Genome Research | 2014

Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana.

Stefania Del Prete; Javier Arpón; Kaori Sakai; Philippe Andrey; Valérie Gaudin

The interphase cell nucleus is extraordinarily complex, ordered, and dynamic. In the last decade, remarkable progress has been made in deciphering the functional organisation of the cell nucleus, and intricate relationships between genome functions (transcription, DNA repair, or replication) and various nuclear compartments have been revealed. In this review, we describe the architecture of the Arabidopsis thaliana interphase cell nucleus and discuss the dynamic nature of its organisation. We underline the need for further developments in quantitative and modelling approaches to nuclear organization.

Collaboration


Dive into the Valérie Gaudin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Maurin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Clemence Kress

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Delphine Lefebvre

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eve Devinoy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Kiên Kiêu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Lise Jouanin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nathalie Beaujean

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pascale Debey

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sophie Germann

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge