Valérie Grandjean
University of Nice Sophia Antipolis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valérie Grandjean.
Nature | 2006
Minoo Rassoulzadegan; Valérie Grandjean; Pierre Gounon; Stéphane Vincent; Isabelle Gillot; François Cuzin
Paramutation is a heritable epigenetic modification induced in plants by cross-talk between allelic loci. Here we report a similar modification of the mouse Kit gene in the progeny of heterozygotes with the null mutant Kittm1Alf (a lacZ insertion). In spite of a homozygous wild-type genotype, their offspring maintain, to a variable extent, the white spots characteristic of Kit mutant animals. Efficiently inherited from either male or female parents, the modified phenotype results from a decrease in Kit messenger RNA levels with the accumulation of non-polyadenylated RNA molecules of abnormal sizes. Sustained transcriptional activity at the postmeiotic stages—at which time the gene is normally silent—leads to the accumulation of RNA in spermatozoa. Microinjection into fertilized eggs either of total RNA from Kittm1Alf/+ heterozygotes or of Kit-specific microRNAs induced a heritable white tail phenotype. Our results identify an unexpected mode of epigenetic inheritance associated with the zygotic transfer of RNA molecules.
Developmental Cell | 2008
Kay D. Wagner; Nicole Wagner; Hossein Ghanbarian; Valérie Grandjean; Pierre Gounon; François Cuzin; Minoo Rassoulzadegan
Epigenetic regulation shapes normal and pathological mammalian development and physiology. Our previous work showed that Kit RNAs injected into fertilized mouse eggs can produce heritable epigenetic defects, or paramutations, with relevant loss-of-function pigmentation phenotypes, which affect adult phenotypes in multiple succeeding generations of mice. Here, we illustrate the relevance of paramutation to pathophysiology by injecting fertilized mouse eggs with RNAs targeting Cdk9, a key regulator of cardiac growth. Microinjecting fragments of either the coding region or the related microRNA miR-1 led to high levels of expression of homologous RNA, resulting in an epigenetic defect, cardiac hypertrophy, whose efficient hereditary transmission correlated with the presence of miR-1 in the sperm nucleus. In this case, paramutation increased rather than decreased expression of Cdk9. These results highlight the diversity of RNA-mediated epigenetic effects and may provide a paradigm for clinical cases of familial diseases whose inheritance is not fully explained in Mendelian terms.
PLOS Genetics | 2013
Jafar Kiani; Valérie Grandjean; Reinhard Liebers; Francesca Tuorto; Hossein Ghanbarian; Frank Lyko; François Cuzin; Minoo Rassoulzadegan
RNA–mediated transmission of phenotypes is an important way to explain non-Mendelian heredity. We have previously shown that small non-coding RNAs can induce hereditary epigenetic variations in mice and act as the transgenerational signalling molecules. Two prominent examples for these paramutations include the epigenetic modulation of the Kit gene, resulting in altered fur coloration, and the modulation of the Sox9 gene, resulting in an overgrowth phenotype. We now report that expression of the Dnmt2 RNA methyltransferase is required for the establishment and hereditary maintenance of both paramutations. Our data show that the Kit paramutant phenotype was not transmitted to the progeny of Dnmt2−/− mice and that the Sox9 paramutation was also not established in Dnmt2−/− embryos. Similarly, RNA from Dnmt2-negative Kit heterozygotes did not induce the paramutant phenotype when microinjected into Dnmt2-deficient fertilized eggs and microinjection of the miR-124 microRNA failed to induce the characteristic giant phenotype. In agreement with an RNA–mediated mechanism of inheritance, no change was observed in the DNA methylation profiles of the Kit locus between the wild-type and paramutant mice. RNA bisulfite sequencing confirmed Dnmt2-dependent tRNA methylation in mouse sperm and also indicated Dnmt2-dependent cytosine methylation in Kit RNA in paramutant embryos. Together, these findings uncover a novel function of Dnmt2 in RNA–mediated epigenetic heredity.
Scientific Reports | 2016
Valérie Grandjean; Sandra Fourré; Diana Andrea Fernandes De Abreu; Marie-Alix Derieppe; Jean-Jacques Remy; Minoo Rassoulzadegan
The paternal heredity of obesity and diabetes induced by a high-fat and/or high-sugar diet (Western-like diet) has been demonstrated through epidemiological analysis of human cohorts and experimental analysis, but the nature of the hereditary vector inducing this newly acquired phenotype is not yet well defined. Here, we show that microinjection of either testis or sperm RNA of male mice fed a Western-like diet into naive one-cell embryos leads to the establishment of the Western-like diet-induced metabolic phenotype in the resulting progenies, whereas RNAs prepared from healthy controls did not. Among multiple sequence differences between the testis transcriptomes of the sick and healthy fathers, we noted that several microRNAs had increased expression, which was of interest because this class of noncoding RNA is known to be involved in epigenetic control of gene expression. When microinjected into naive one-cell embryos, one of these small RNA, i.e., the microRNA miR19b, induced metabolic alterations that are similar to the diet-induced phenotype. Furthermore, this pathological phenotype was inherited by the offspring after crosses with healthy partners. Our results indicate that acquired food-induced trait inheritance might be enacted by RNA signalling.
FEBS Letters | 2001
Valérie Grandjean; Laura P. O'Neill; Takashi Sado; Bryan M. Turner; Anne C. Ferguson-Smith
DNA methylation and histone H4 acetylation play a role in gene regulation by modulating the structure of the chromatin. Recently, these two epigenetic modifications have dynamically and physically been linked. Evidence suggests that both modifications are involved in regulating imprinted genes – a subset of genes whose expression depends on their parental origin. Using immunoprecipitation assays, we investigate the relationship between DNA methylation, histone H4 acetylation and gene expression in the well‐characterised imprinted Igf2‐H19 domain on mouse chromosome 7. A systematic regional analysis of the acetylation status of the domain shows that parental‐specific differences in acetylation of the core histone H4 are present in the promoter regions of both Igf2 and H19 genes, with the expressed alleles being more acetylated than the silent alleles. A correlation between DNA methylation, histone hypoacetylation and gene repression is evident only at the promoter region of the H19 gene. Treatment with trichostatin A, a specific inhibitor of histone deacetylase, reduces the expression of the active maternal H19 allele and this can be correlated with regional changes in acetylation within the upstream regulatory domain. The data suggest that histone H4 acetylation and DNA methylation have distinct functions on the maternal and paternal Igf2‐H19 domains.
PLOS ONE | 2007
Valérie Grandjean; Ruken Yaman; François Cuzin; Minoo Rassoulzadegan
Site-specific methylation of cytosines is a key epigenetic mark of vertebrate DNA. While a majority of the methylated residues are in the symmetrical (meC)pG:Gp(meC) configuration, a smaller, but significant fraction is found in the CpA, CpT and CpC asymmetric (non-CpG) dinucleotides. CpG methylation is reproducibly maintained by the activity of the DNA methyltransferase 1 (Dnmt1) on the newly replicated hemimethylated substrates (meC)pG:GpC. On the other hand, establishment and hereditary maintenance of non-CpG methylation patterns have not been analyzed in detail. We previously reported the occurrence of site- and allele-specific methylation at both CpG and non-CpG sites. Here we characterize a hereditary complex of non-CpG methylation, with the transgenerational maintenance of three distinct profiles in a constant ratio, associated with extensive CpG methylation. These observations raised the question of the signal leading to the maintenance of the pattern of asymmetric methylation. The complete non-CpG pattern was reinstated at each generation in spite of the fact that the majority of the sperm genomes contained either none or only one methylated non-CpG site. This observation led us to the hypothesis that the stable CpG patterns might act as blueprints for the maintenance of non-CpG DNA methylation. As predicted, non-CpG DNA methylation profiles were abrogated in a mutant lacking Dnmt1, the enzymes responsible for CpG methylation, but not in mutants defective for either Dnmt3a or Dnmt2.
PLOS ONE | 2012
Mitsuoki Kawano; Hideya Kawaji; Valérie Grandjean; Jafar Kiani; Minoo Rassoulzadegan
The recent discovery of a significant amount of RNA in spermatozoa contradicted the previously held belief that paternal contribution was limited to one copy of the genome. Furthermore, detection of RNA in sperm raised the intriguing question of its possible role in embryonic development. The possibility that RNAs may serve as epigenetic determinants was supported by experiments showing inheritance of epigenetic traits in mice mediated by RNA. We used high-throughput, large-scale sequencing technology to analyze sperm RNA. The RNA sequences generated were diverse in terms of length and included mRNAs, rRNAs, piRNAs, and miRNAs. We studied two small noncoding RNAs enriched in mature sperm, designated sperm RNAs (spR) −12 and −13. They are both encoded in a piRNA locus on chromosome 17, but neither their length (20–21 nt), nor their sequences correspond to known piRNAs or miRNAs. They are resistant to periodate-oxidation-mediated reaction, implying that they undergo terminal post-transcriptional modification. Both were detected in sperm and ovulated unfertilized oocytes, present in one-cell embryos and maintained in preimplantation stages, but not at later differentiation stages. These findings offer a new perspective regarding a possibly important role for gamete-specific small RNAs in early embryogenesis.
Biochemical Society Transactions | 2007
Minoo Rassoulzadegan; Valérie Grandjean; Pierre Gounon; François Cuzin
Hereditary epigenetic variation, initially recognized and studied extensively in plants, had not been reported in mammals until recently. We have now identified the Kit locus as the first example of a paramutable gene of the mouse. Kit(+/+) homozygotes born from Kit(tm1Alf)(/+) heterozygotes maintain and transmit to their progeny the white-spotted phenotype characteristic of the mutant heterozygote. Our observation of unusual amounts of RNA in the sperm of the paramutated (Kit*) males had led us to consider the possibility of RNA-mediated inheritance. A role for RNA was supported further by the efficient establishment of the epigenetic modification following microinjection in one-cell embryos of either sperm RNA of the paramutated males or of the Kit-specific microRNAs miR-221 and -222. In this article, we describe the phenotypes associated with the wild-type genome in the Kit* paramutated animals. Paramutation may be considered to be one possibility of epigenetic modification in the case of familial disease predispositions that are not fully accounted for by Mendelian analysis.
Cell Death and Disease | 2017
Zoheir Hizir; Silvia Bottini; Valérie Grandjean; Michele Trabucchi; Emanuela Repetto
The recent discovery of new classes of small RNAs has opened unknown territories to explore new regulations of physiopathological events. We have recently demonstrated that RNY (or Y RNA)-derived small RNAs (referred to as s-RNYs) are an independent class of clinical biomarkers to detect coronary artery lesions and are associated with atherosclerosis burden. Here, we have studied the role of s-RNYs in human and mouse monocytes/macrophages and have shown that in lipid-laden monocytes/macrophages s-RNY expression is timely correlated to the activation of both NF-κB and caspase 3-dependent cell death pathways. Loss- or gain-of-function experiments demonstrated that s-RNYs activate caspase 3 and NF-κB signaling pathways ultimately promoting cell death and inflammatory responses. As, in atherosclerosis, Ro60-associated s-RNYs generated by apoptotic macrophages are released in the blood of patients, we have investigated the extracellular function of the s-RNY/Ro60 complex. Our data demonstrated that s-RNY/Ro60 complex induces caspase 3-dependent cell death and NF-κB-dependent inflammation, when added to the medium of cultured monocytes/macrophages. Finally, we have shown that s-RNY function is mediated by Toll-like receptor 7 (TLR7). Indeed using chloroquine, which disrupts signaling of endosome-localized TLRs 3, 7, 8 and 9 or the more specific TLR7/9 antagonist, the phosphorothioated oligonucleotide IRS954, we blocked the effect of either intracellular or extracellular s-RNYs. These results position s-RNYs as relevant novel functional molecules that impacts on macrophage physiopathology, indicating their potential role as mediators of inflammatory diseases, such as atherosclerosis.
Nature Communications | 2017
Silvia Bottini; Nedra Hamouda-Tekaya; Raphael Mategot; Laure-Emmanuelle Zaragosi; Stéphane Audebert; Sabrina Pisano; Valérie Grandjean; Claire Mauduit; Mohamed Benahmed; Pascal Barbry; Emanuela Repetto; Michele Trabucchi
There is a growing body of evidence about the presence and the activity of the miRISC in the nucleus of mammalian cells. Here, we show by quantitative proteomic analysis that Ago2 interacts with the nucleoplasmic protein Sfpq in an RNA-dependent fashion. By a combination of HITS-CLIP and transcriptomic analyses, we demonstrate that Sfpq directly controls the miRNA targeting of a subset of binding sites by local binding. Sfpq modulates miRNA targeting in both nucleoplasm and cytoplasm, indicating a nucleoplasmic commitment of Sfpq-target mRNAs that globally influences miRNA modes of action. Mechanistically, Sfpq binds to a sizeable set of long 3′UTRs forming aggregates to optimize miRNA positioning/recruitment at selected binding sites, including let-7a binding to Lin28A 3′UTR. Our results extend the miRNA-mediated post-transcriptional gene silencing into the nucleoplasm and indicate that an Sfpq-dependent strategy for controlling miRNA activity takes place in cells, contributing to the complexity of miRNA-dependent gene expression control.MicroRNAs have been best characterized for their functions in the cytoplasm; however, there is growing evidence of a nuclear localized role. Here, the authors identify Sfpq as an Ago2-interacting protein that modulates miRNA activity in both the nucleus and cytoplasm.