Valérie Panneels
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valérie Panneels.
The EMBO Journal | 2002
Sabine Costagliola; Valérie Panneels; Marco Bonomi; J Koch; Marie-Christine Many; Guillaume Smits; Gilbert Vassart
The glycoprotein hormone receptors (thyrotrophin receptor, TSHr; luteinizing hormone/chorionic gonadotrophin receptor, LH/CGr; follicle‐stimulating hormone receptor, FSHr) constitute a subfamily of rhodopsin‐like G protein‐coupled receptors (GPCRs) with a long N‐terminal extracellular extension responsible for high‐affinity hormone binding. These ectodomains contain two cysteine clusters flanking nine leucine‐rich repeats (LRR), a motif found in several protein families involved in protein–protein interactions. Similar to the situation described recently in CCR5, we demonstrate here that the TSHr, as it is present at the cell surface, is sulfated on tyrosines in a motif located downstream of the C‐terminal cysteine cluster. Sulfation of one of the two tyrosines in the motif is mandatory for high‐affinity binding of TSH and activation of the receptor. Site‐directed mutagenesis experiments indicate that the motif, which is conserved in all members of the glycoprotein hormone receptor family, seems to play a similar role in the LH/CG and FSH receptors.
IUCrJ | 2015
Przemyslaw Nogly; Daniel James; Dingjie Wang; Thomas A. White; Nadia A. Zatsepin; Anastasya Shilova; Garrett Nelson; Haiguang Liu; Linda Johansson; Michael Heymann; Kathrin Jaeger; Markus Metz; Cecilia Wickstrand; Wenting Wu; Petra Båth; Peter Berntsen; Dominik Oberthuer; Valérie Panneels; Vadim Cherezov; Henry N. Chapman; Gebhard F. X. Schertler; Richard Neutze; John David Spence; Isabel Moraes; Manfred Burghammer; Joerg Standfuss; Uwe Weierstall
This article describes the structure determination of a membrane protein by serial injection of microcrystals in lipidic cubic phases into a synchrotron microfocus beam. The method is discussed with respect to serial femtosecond crystallography at free-electron lasers.
EMBO Reports | 2002
Cagla Eroglu; Philippe Cronet; Valérie Panneels; Philippe Beaufils; Irmgard Sinning
G‐protein‐coupled receptors (GPCRs) form one of the largest superfamilies of membrane proteins. Obtaining high yields of GPCRs remains one of the major factors limiting a detailed understanding of their structure and function. Photoreceptor cells (PRCs) contain extensive stacks of specialized membranes where high levels of rhodopsins are naturally present, which makes them ideal for the overexpression of GPCRs. We have generated transgenic flies expressing a number of GPCRs in the PRCs. Drosophila melanogaster metabotropic glutamate receptor (DmGluRA) expressed by this novel strategy was purified to homogeneity, giving at least 3‐fold higher yields than conventional baculovirus expression systems due to the higher membrane content of the PRCs. Pure DmGluRA was then reconstituted into liposomes of varying composition. Interestingly, glutamate binding was strictly dependent on the presence of ergosterol.
EMBO Reports | 2013
Ankita Singhal; Martin K. Ostermaier; Sergey A. Vishnivetskiy; Valérie Panneels; Kristoff T. Homan; John J. G. Tesmer; Dmitry B. Veprintsev; Xavier Deupi; Vsevolod V. Gurevich; Gebhard F. X. Schertler; Joerg Standfuss
We present active‐state structures of the G protein‐coupled receptor (GPCRs) rhodopsin carrying the disease‐causing mutation G90D. Mutations of G90 cause either retinitis pigmentosa (RP) or congenital stationary night blindness (CSNB), a milder, non‐progressive form of RP. Our analysis shows that the CSNB‐causing G90D mutation introduces a salt bridge with K296. The mutant thus interferes with the E113Q‐K296 activation switch and the covalent binding of the inverse agonist 11‐cis‐retinal, two interactions that are crucial for the deactivation of rhodopsin. Other mutations, including G90V causing RP, cannot promote similar interactions. We discuss our findings in context of a model in which CSNB is caused by constitutive activation of the visual signalling cascade.
Journal of Structural Biology | 2015
Ana Diaz; Barbora Malkova; Mirko Holler; Manuel Guizar-Sicairos; Enju Lima; Valérie Panneels; Gaia Pigino; Anne Greet Bittermann; Larissa Wettstein; Takashi Tomizaki; Oliver Bunk; Gebhard F. X. Schertler; Takashi Ishikawa; Roger Wepf; Andreas Menzel
We demonstrate absolute quantitative mass density mapping in three dimensions of frozen-hydrated biological matter with an isotropic resolution of 180 nm. As model for a biological system we use Chlamydomonas cells in buffer solution confined in a microcapillary. We use ptychographic X-ray computed tomography to image the entire specimen, including the 18 μm-diameter capillary, thereby providing directly an absolute mass density measurement of biological matter with an uncertainty of about 6%. The resulting maps have sufficient contrast to distinguish cells from the surrounding ice and several organelles of different densities inside the cells. Organelles are identified by comparison with a stained, resin-embedded specimen, which can be compared with established transmission electron microscopy results. For some identified organelles, the knowledge of their elemental composition reduces the uncertainty of their mass density measurement down to 1% with values consistent with previous measurements of dry weight concentrations in thin cellular sections by scanning transmission electron microscopy. With prospects of improving the spatial resolution in the near future, we expect that the capability of non-destructive three-dimensional mapping of mass density in biological samples close to their native state becomes a valuable method for measuring the packing of organic matter on the nanoscale.
Cellular Signalling | 2013
Sergey A. Vishnivetskiy; Martin K. Ostermaier; Ankita Singhal; Valérie Panneels; Kristoff T. Homan; Alisa Glukhova; Stephen G. Sligar; John J. G. Tesmer; Gebhard F. X. Schertler; Joerg Standfuss; Vsevolod V. Gurevich
The effects of activating mutations associated with night blindness on the stoichiometry of rhodopsin interactions with G protein-coupled receptor kinase 1 (GRK1) and arrestin-1 have not been reported. Here we show that the monomeric form of WT rhodopsin and its constitutively active mutants M257Y, G90D, and T94I, reconstituted into HDL particles are effectively phosphorylated by GRK1, as well as two more ubiquitously expressed subtypes, GRK2 and GRK5. All versions of arrestin-1 tested (WT, pre-activated, and constitutively monomeric mutants) bind to monomeric rhodopsin and show the same selectivity for different functional forms of rhodopsin as in native disc membranes. Rhodopsin phosphorylation by GRK1 and GRK2 promotes arrestin-1 binding to a comparable extent, whereas similar phosphorylation by GRK5 is less effective, suggesting that not all phosphorylation sites on rhodopsin are equivalent in promoting arrestin-1 binding. The binding of WT arrestin-1 to phospho-opsin is comparable to the binding to its preferred target, P-Rh*, suggesting that in photoreceptors arrestin-1 only dissociates after opsin regeneration with 11-cis-retinal, which converts phospho-opsin into inactive phospho-rhodopsin that has lower affinity for arrestin-1. Reduced binding of arrestin-1 to the phospho-opsin form of G90D mutant likely contributes to night blindness caused by this mutation in humans.
Protein Expression and Purification | 2003
Valérie Panneels; Cagla Eroglu; Philippe Cronet; Irmgard Sinning
Metabotropic glutamate receptors (mGluRs) play important roles in the function and regulation of the central nervous system. Structural studies are necessary for the detailed understanding of their mechanisms of action. However, overexpression and purification of functional receptors in quantities required for these studies proves to be a major challenge. In this study we report the overexpression of a Drosophila melanogaster mGluR (DmGluRA) by using a baculovirus-insect cell expression system. Expression was tested in two different insect cell hosts (Sf9 and Hi5) and analyzed by performing expression kinetics. Pharmacological characterization of the recombinant receptor by radioactive glutamate binding assays showed a profile similar to group II mGluRs, as previously reported, when the receptor was expressed in mammalian systems. The B(max) value reached 11 pM receptor/mg Sf9-membrane protein. A monoclonal antibody against DmGluRA was generated by genetic immunization and used to purify the receptor.
Nature Communications | 2017
Tobias Weinert; Natacha Olieric; Robert K. Y. Cheng; Steffen Brünle; Daniel James; Dmitry Ozerov; Dardan Gashi; Laura Vera; May Marsh; Kathrin Jaeger; Florian S. N. Dworkowski; Ezequiel Panepucci; Shibom Basu; Petr Skopintsev; Andrew S. Doré; Tian Geng; Robert M. Cooke; Mengning Liang; Andrea E. Prota; Valérie Panneels; Przemyslaw Nogly; Ulrich Ermler; Gebhard F. X. Schertler; Michael Hennig; Michel O. Steinmetz; Meitian Wang; Jörg Standfuss
Historically, room-temperature structure determination was succeeded by cryo-crystallography to mitigate radiation damage. Here, we demonstrate that serial millisecond crystallography at a synchrotron beamline equipped with high-viscosity injector and high frame-rate detector allows typical crystallographic experiments to be performed at room-temperature. Using a crystal scanning approach, we determine the high-resolution structure of the radiation sensitive molybdenum storage protein, demonstrate soaking of the drug colchicine into tubulin and native sulfur phasing of the human G protein-coupled adenosine receptor. Serial crystallographic data for molecular replacement already converges in 1,000–10,000 diffraction patterns, which we collected in 3 to maximally 82 minutes. Compared with serial data we collected at a free-electron laser, the synchrotron data are of slightly lower resolution, however fewer diffraction patterns are needed for de novo phasing. Overall, the data we collected by room-temperature serial crystallography are of comparable quality to cryo-crystallographic data and can be routinely collected at synchrotrons.Serial crystallography was developed for protein crystal data collection with X-ray free-electron lasers. Here the authors present several examples which show that serial crystallography using high-viscosity injectors can also be routinely employed for room-temperature data collection at synchrotrons.
Biochemical and Biophysical Research Communications | 2003
Valérie Panneels; Ute Schüssler; Sabine Costagliola; Irmgard Sinning
ATP/ADP carriers (AACs) are essential to the cell as they exchange ATP produced in mitochondria for cytosolic ADP. Monoclonal antibodies against the isoform 2 of Saccharomyces cerevisiae AAC (ScAAC2) were used to probe the accessibility of the matrix loops 1 and 3 depending on the environment of the carrier. In mitochondrial membranes ScAAC2 was not recognized, whereas in dodecylmaltoside the antibodies bound to the carrier, suggesting that the epitopes are hidden in the native environment. Exposure of the epitopes by detergents was reversed by reconstitution of the carrier in phospholipids or by exchanging with detergents having a choline or a trimethylammonium head group. Circular dichroism spectroscopy on peptides representing the C-terminal regions of all three matrix loops showed that only phosphocholine detergents induced a structural reorganization. Since in addition phosphatidylcholine was found to be tightly associated with the purified carrier, the matrix loop regions are likely to be associated to the membrane by phosphatidylcholine.
Structural Dynamics | 2015
Valérie Panneels; Wenting Wu; Ching-Ju Tsai; Przemek Nogly; Jan Rheinberger; Kathrin Jaeger; Gregor Cicchetti; Cornelius Gati; Leonhard M. Kick; Leonardo Sala; Guido Capitani; C. J. Milne; Celestino Padeste; Bill Pedrini; Xiao-Dan Li; Jörg Standfuss; Rafael Abela; Gebhard F. X. Schertler
Structural information of the different conformational states of the two prototypical light-sensitive membrane proteins, bacteriorhodopsin and rhodopsin, has been obtained in the past by X-ray cryo-crystallography and cryo-electron microscopy. However, these methods do not allow for the structure determination of most intermediate conformations. Recently, the potential of X-Ray Free Electron Lasers (X-FELs) for tracking the dynamics of light-triggered processes by pump-probe serial femtosecond crystallography has been demonstrated using 3D-micron-sized crystals. In addition, X-FELs provide new opportunities for protein 2D-crystal diffraction, which would allow to observe the course of conformational changes of membrane proteins in a close-to-physiological lipid bilayer environment. Here, we describe the strategies towards structural dynamic studies of retinal proteins at room temperature, using injector or fixed-target based serial femtosecond crystallography at X-FELs. Thanks to recent progress especially in sample delivery methods, serial crystallography is now also feasible at synchrotron X-ray sources, thus expanding the possibilities for time-resolved structure determination.