Valérie Rosseels
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valérie Rosseels.
Infection and Immunity | 2001
Audrey Tanghe; Sushila D'Souza; Valérie Rosseels; Olivier Denis; Thomas H. M. Ottenhoff; Wilfried Dalemans; Carl Wheeler; Kris Huygen
ABSTRACT C57BL/6 mice were vaccinated with plasmid DNA encoding Ag85 fromMycobacterium tuberculosis, with Ag85 protein in adjuvant, or with a combined DNA prime-protein boost regimen. While DNA immunization, as previously described, induced robust Th1-type cytokine responses, protein-in-adjuvant vaccination elicited very poor cytokine responses, which were 10-fold lower than those observed with DNA immunization alone. Injection of Ag85 DNA-primed mice with 30 to 100 μg of purified Ag85 protein in adjuvant increased the interleukin-2 and gamma interferon (IFN-γ) response in spleen two- to fourfold. Further, intracellular cytokine analysis by flow cytometry also showed an increase in IFN-γ-producing CD4+ T cells in DNA-primed–protein-boosted animals, compared to those that received only the DNA vaccination. Moreover, these responses appeared to be better sustained over time. Antibodies were readily produced by all three methods of immunization but were exclusively of the immunoglobulin G1 (IgG1) isotype following protein immunization in adjuvant and preferentially of the IgG2a isotype following DNA and DNA prime-protein boost vaccination. Finally, protein boosting increased the protective efficacy of the DNA vaccine against an intravenousM. tuberculosis H37Rv challenge infection, as measured by CFU or relative light unit counts in lungs 1 and 2 months after infection. The capacity of exogenously given protein to boost the DNA-primed vaccination effect underlines the dominant role of Th1-type CD4+ helper T cells in mediating protection.
Infection and Immunity | 2003
Sushila D'Souza; Valérie Rosseels; Marta Romano; Audrey Tanghe; Olivier Denis; Fabienne Jurion; N. Castiglione; Albert Vanonckelen; Kamiel Palfliet; Kris Huygen
ABSTRACT BALB/c (H-2d) and C57BL/6 (H-2b) mice were infected intravenously with Mycobacterium tuberculosis H37Rv or vaccinated intramuscularly with plasmid DNA encoding each of the three mycolyl transferases Ag85A, Ag85B, and Ag85C from M. tuberculosis. Th1-type spleen cell cytokine secretion of interleukin-2 (IL-2) and gamma interferon (IFN-γ) was analyzed in response to purified Ag85 components and synthetic overlapping peptides covering the three mature sequences. Tuberculosis-infected C57BL/6 mice reacted strongly to some peptides from Ag85A and Ag85B but not from Ag85C, whereas tuberculosis-infected BALB/c mice reacted only to peptides from Ag85A. In contrast, spleen cells from both mouse strains produced elevated levels of IL-2 and IFN-γ following vaccination with Ag85A, Ag85B, and Ag85C DNA in response to peptides of the three Ag85 proteins, and the epitope repertoire was broader than in infected mice. Despite pronounced sequence homology, a number of immunodominant regions contained component specific epitopes. Thus, BALB/c mice vaccinated with all three Ag85 genes reacted against the same amino acid region, 101 to 120, that was also immunodominant for Ag85A in M. bovis BCG-vaccinated and tuberculosis-infected H-2d haplotype mice, but responses were completely component specific. In C57BL/6 mice, a cross-reactive T-cell response was detected against two carboxy-terminal peptides spanning amino acids 241 to 260 and 261 to 280 of Ag85A and Ag85B. These regions were not recognized at all in C57BL/6 mice vaccinated with Ag85C DNA. Our results underline the need for comparative analysis of all three Ag85 components in future vaccination studies.
Infection and Immunity | 2006
Valérie Rosseels; Sylvie Marché; Virginie Roupie; Marc Govaerts; Jacques Godfroid; Karl Walravens; Kris Huygen
ABSTRACT The characterization of protective antigens is essential for the development of an effective, subunit-based vaccine against paratuberculosis. Surface-exposed and secreted antigens, present abundantly in mycobacterial culture filtrate (CF), are among the well-known protective antigens of Mycobacterium tuberculosis and Mycobacterium bovis. Culture filtrate, prepared from Mycobacterium avium subsp. paratuberculosis ATCC 19698 grown as a surface pellicle on synthetic Sauton medium, was strongly and early recognized in experimentally infected B6 bg/bg beige mice and cattle, as indicated by elevated spleen cell gamma interferon (IFN-γ) secretion and lymphoproliferative responses of peripheral blood mononuclear cells, respectively. Strong proliferative and ex vivo IFN-γ responses against antigen 85 (Ag85) complex (a major protein component from M. bovis BCG culture filtrate) could be detected in cattle as early as 10 weeks after oral M. avium subsp. paratuberculosis infection. Synthetic peptides from the Ag85A and Ag85B components of this complex were strongly recognized, whereas T-cell responses were weaker against peptides from the Ag85C protein. A promiscuous T-cell epitope spanning amino acids 145 to 162 of Ag85B (identical sequence in M. bovis and M. avium subsp. paratuberculosis) was identified in experimentally infected cattle. Finally, young calves, born from cows with confirmed paratuberculosis, demonstrated proliferative responses to purified, recombinant Ag85A and Ag85B from M. avium subsp. paratuberculosis. These results indicate that the M. avium subsp. paratuberculosis Ag85 homologues are immunodominant T-cell antigens that are recognized early in experimental and natural infection of cattle.
Expert Review of Vaccines | 2008
Valérie Rosseels; Kris Huygen
Johne’s disease, or paratuberculosis, is a chronic granulomatous enteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) affecting principally cattle, sheep and goats. Primarily, there are two clinical signs: cachexia and chronic diarrhea (less common in goats and sheep). This disease results in considerable economic losses in livestock industry, particularly the dairy sector. The route of transmission is mostly by the fecal–oral route, but hygienic measures and culling of shedding animals are not sufficient to eradicate this disease. Moreover, diagnostic tools available at this moment are not powerful enough to perform early and specific diagnosis. Existing vaccines, based on whole killed or live-attenuated bacteria, can delay the unset of clinical symptoms but do not protect against infection. Moreover, vaccinated animals develop antibodies that interfere with existing serodiagnostic tests for paratuberculosis and they become reactive in the tuberculin skin test, used for the control of bovine tuberculosis. This review summarizes the current knowledge of the immune responses induced by MAP infection, with focus on cattle studies. It provides an overview of the existing MAP vaccines and comments on the development of second-generation subunit vaccines based on new technologies.
Veterinary Microbiology | 2009
Léonid M. Irenge; Karl Walravens; Marc Govaerts; Jacques Godfroid; Valérie Rosseels; Kris Huygen; Jean-Luc Gala
A triplex real-time (TRT-PCR) assay was developed to ensure a rapid and reliable detection of Mycobacterium avium subsp. paratuberculosis (Map) in faecal samples and to allow routine detection of Map in farmed livestock and wildlife species. The TRT-PCR assay was designed using IS900, ISMAP02 and f57 molecular targets. Specificity of TRT-PCR was first confirmed on a panel of control mycobacterial Map and non-Map strains and on faecal samples from Map-negative cows (n=35) and from Map-positive cows (n=20). The TRT-PCR assay was compared to direct examination after Ziehl-Neelsen (ZN) staining and to culture on 197 faecal samples collected serially from five calves experimentally exposed to Map over a 3-year period during the sub-clinical phase of the disease. The data showed a good agreement between culture and TRT-PCR (kappa score=0.63), with the TRT-PCR limit of detection of 2.5 x 10(2)microorganisms/g of faeces spiked with Map. ZN agreement with TRT-PCR was not good (kappa=0.02). Sequence analysis of IS900 amplicons from three single IS900 positive samples confirmed the true Map positivity of the samples. Highly specific IS900 amplification suggests therefore that each single IS900 positive sample from experimentally exposed animals was a true Map-positive specimen. In this controlled experimental setting, the TRT-PCT was rapid, specific and displayed a very high sensitivity for Map detection in faecal samples compared to conventional methods.
Infection and Immunity | 2008
Virginie Roupie; Valérie Rosseels; Virginie Piersoel; Denise K. Zinniel; Raúl G. Barletta; Kris Huygen
ABSTRACT We have recently described the development of a luminescent Mycobacterium paratuberculosis strain of bovine origin expressing the luxAB genes of Vibrio harveyi. With this luminescent isolate, fastidious and costly enumeration of CFU by plating them on agar can be replaced by easy and rapid luminometry. Here, we have reevaluated the effect of Slc11a1 (formerly Nramp1) polymorphism on susceptibility to M. paratuberculosis, using this luminometric method. A series of inbred mouse strains were infected intravenously with luminescent M. paratuberculosis S-23 and monitored for bacterial replication in spleen, liver, and lungs for 12 weeks. The results indicate that, as for Mycobacterium avium subsp. avium, innate resistance to infection is genetically controlled by Slc11a1. In BALB/c, congenic BALB.B10-H2b (BALB/c background; H-2b), C57BL/6, and beige C57BL/6bg/bg mice (all Slc11a1s), bacterial numbers in spleen and liver remained unchanged during the first 4 weeks of infection, whereas in DBA/2 and congenic BALB/c.DBA/2 (C.D2) mice (both Slc11a1r) and in (C57BL/6 × DBA/2)F1 mice (Slc11a1s/r), the bacterial numbers had decreased more than 10-fold at 4 weeks postinfection in both male and female mice. At later time points, additional differences in bacterial replication were observed between the susceptible mouse strains, particularly in the liver. Whereas bacterial numbers in the liver gradually decreased more than 100-fold in C57BL/6 mice between week 4 and week 12, bacterial numbers were stable in livers from BALB/c and beige C57BL/6bg/bg mice during this period. Mycobacterium-specific gamma interferon responses developed earlier and to a higher magnitude in C57BL/6 mice than in BALB/c mice and were lowest in resistant C.D2 mice.
Infection and Immunity | 2006
Valérie Rosseels; Virginie Roupie; Denise K. Zinniel; Raúl G. Barletta; Kris Huygen
ABSTRACT Mycobacterium avium subsp. paratuberculosis is a slowly growing mycobacterial species, requiring 6 to 8 weeks of culture before colonies can be counted visually. Here, we describe the development of luminescent M. avium subsp. paratuberculosis expressing luxAB genes of Vibrio harveyi and its use for vaccine testing in an experimental mouse model, replacing fastidious CFU counting by rapid luminometry.
Vaccine | 2008
Virginie Roupie; Baptiste Leroy; Valérie Rosseels; Virginie Piersoel; Isabelle Noël-Georis; Marta Romano; Marc Govaerts; Jean-Jacques Letesson; Ruddy Wattiez; Kris Huygen
Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis of the small intestine in domestic and wild ruminants, causes substantial losses to livestock industry. Control of this disease is seriously hampered by the lack of adequate diagnostic tools, vaccines and therapies. In this study, we have evaluated the vaccine potential of two MAP proteins, i.e. MAP0586c and MAP4308c, previously identified by postgenomic and immunoproteomic analysis of MAP secretome as novel serodiagnostic antigens. Immunizations of BALB/c and C57BL/6 mice with plasmid DNA encoding MAP0586c and MAP4308c induced strong Th1 type immune responses to both antigens, whereas antibody responses were only induced upon immunization with DNA encoding MAP4308c. Homologous boosting of DNA vaccinated mice with recombinant protein resulted in strong antibody responses against both proteins. Using synthetic overlapping peptides, immunodominant H-2(d) and H-2(b) restricted Th1 T cell epitopes were identified. Finally, MAP infected mice generated strong MAP0586c-specific T cell responses and MAP0586c DNA vaccination could protect BALB/c but not C57BL/6 mice against MAP challenge mice to the same extent as the Mycobacterium bovis BCG vaccine, indicating that this putative transglycosylase is an interesting vaccine candidate that warrants further investigation.
Veterinary Immunology and Immunopathology | 2002
Karl Walravens; S Marché; Valérie Rosseels; V. Wellemans; F. Boelaert; Kris Huygen; Jacques Godfroid
Abstract In countries where cattle tuberculosis caused by Mycobacterium bovis (Mbov) and paratuberculosis caused by Mycobacterium avium subsp. paratuberculosis (Mptb) are present, testing strategies for the Mbov eradication have to discriminate between these two infections. Present indirect tests are based on the analysis of the specific cellular immune response (DTH, IFN-γ) against crude mycobacterial antigens (avian and bovine PPD). In this study, we compared the evolution of the IFN-γ responses of animals experimentally infected with Mbov, Mptb, or inoculated with Mycobacterium phlei . Mbov inoculation induced a strong IFN-γ response that allows rapid classification of the status of the animals following interpretation criteria set up by us. Experimental inoculation with M. phlei induced sensitisation to mycobacterial antigens as detected by the IFN-γ test but these reactions were of short duration, therefore, repeated testing allows us to define these animals as aspecific reactors. IFN-γ response induced after oral inoculation of calves with Mptb was of low intensity and ratio of responses measured against avian versus bovine PPD did not allow a clear diagnostic at least for the six first month of infection.
Proteomics | 2007
Baptiste Leroy; Virginie Roupie; Isabelle Noël-Georis; Valérie Rosseels; Karl Walravens; Marc Govaerts; Kris Huygen; Ruddy Wattiez